ترغب بنشر مسار تعليمي؟ اضغط هنا

LFV radiative Decays and Leptogenesis in the SUSY seesaw model

68   0   0.0 ( 0 )
 نشر من قبل Tetsuo Shindou
 تاريخ النشر 2006
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The lepton flavour violating charged lepton decays mu to e + gamma and thermal leptogenesis are analysed in the minimal supersymmetric standard model with see-saw mechanism of neutrino mass generation and soft supersymmetry breaking terms with universal boundary conditions. Hierarchical spectrum of heavy Majorana neutrino masses, M_1 << M_2 << M_3, is considered. In this scenario, the requirement of successful thermal leptogenesis implies a lower bound on M_1. For the natural GUT values of the heaviest right-handed Majorana neutrino mass, M_3 > 5 times 10^{13} GeV, and supersymmetry particle masses in the few times 100 GeV range, the predicted mu to e + gamma decay rate exceeds by few order of magnitude the experimental upper limit. This problem is avoided if the matrix of neutrino Yukawa couplings has a specific structure. The latter leads to a correlation between the baryon asymmetry of the Universe predicted by leptogenesis, BR(mu to e + gamma) and the effective Majorana mass in neutrinoless double beta decay.



قيم البحث

اقرأ أيضاً

In the supersymmetric triplet (type-II) seesaw model, in which a single SU(2)_L-triplet couples to leptons, the high-energy neutrino flavour structure can be directly determined from the low-energy neutrino data. We show that even with such a minimal triplet content, leptogenesis can be naturally accommodated thanks to the resonant interference between superpotential and soft supersymmetry breaking terms.
The LFV charged lepton decays mu to e + gamma, tau to e + gamma and tau to mu + gamma and thermal leptogenesis are analysed in the MSSM with see-saw mechanism of neutrino mass generation and soft SUSY breaking with universal boundary conditions. The case of hierarchical heavy Majorana neutrino mass spectrum, M_1 << M_2 << M_3, is investigated. Leptogenesis requires M_1 > 10^9 GeV. Considering the natural range of values of the heaviest right-handed Majorana neutrino mass, M_3 > 5*10^{13} GeV, and assuming that the soft SUSY breaking universal gaugino and/or scalar masses have values in the range of few 100 GeV, we derive the combined constraints, which the existing stringent upper limit on the mu to e + gamma decay rate and the requirement of successful thermal leptogenesis impose on the neutrino Yukawa couplings, heavy Majorana neutrino masses and SUSY parameters. Results for the three possible types of light neutrino mass spectrum -- normal and inverted hierarchical and quasi-degenerate -- are obtained.
We consider the one-loop radiative corrections to the light-neutrino mass matrix and their consequences for the predicted branching ratios of the five lepton-flavour-violating decays $ell_1^- to ell_2^- ell_3^+ ell_3^-$ in a two-Higgs-doublet model f urnished with the type-I seesaw mechanism and soft lepton-flavour violation. We find that the radiative corrections are very significant; they may alter the predicted branching ratios by several orders of magnitude and, in particular, they may help explain why $mbox{BR}(mu^- to e^- e^+ e^-)$ is strongly suppressed relative to the branching ratios of the decays of the $tau^-$. We conclude that, in any serious numerical assessment of the predictions of this model, it is absolutely necessary to take into account the one-loop radiative corrections to the light-neutrino mass matrix.
209 - H. Eberl , E. Ginina (1 2021
We study supersymmetric (SUSY) effects on $C_7(mu_b)$ and $C_7(mu_b)$ which are the Wilson coefficients (WCs) for $b to s gamma$ at b-quark mass scale $mu_b$ and are closely related to radiative $B$-meson decays. The SUSY-loop contributions to $C_7(m u_b)$ and $C_7(mu_b)$ are calculated at leading order (LO) in the Minimal Supersymmetric Standard Model (MSSM) with general quark-flavour violation (QFV). For the first time we perform a systematic MSSM parameter scan for the WCs $C_7(mu_b)$ and $C_7(mu_b)$ respecting all the relevant constraints, i.e. the theoretical constraints from vacuum stability conditions and the experimental constraints, such as those from $K$- and $B$-meson data and electroweak precision data, as well as recent limits on SUSY particle masses and the 125 GeV Higgs boson data from LHC experiments. From the parameter scan we find the following: (1) The MSSM contribution to Re($C_7(mu_b)$) can be as large as $sim pm 0.05$, which could correspond to about 3$sigma$ significance of New Physics (NP) signal in the future LHCb and Belle II experiments. (2) The MSSM contribution to Re($C_7(mu_b)$) can be as large as $sim -0.08$, which could correspond to about 4$sigma$ significance of NP signal in the future LHCb and Belle II experiments. (3) These large MSSM contributions to the WCs are mainly due to (i) large scharm-stop mixing and large scharm/stop involved trilinear couplings, (ii) large sstrange-sbottom mixing and large sstrange-sbottom involved trilinear couplings and (iii) large bottom Yukawa coupling $Y_b$ for large $tanbeta$ and large top Yukawa coupling $Y_t$. In case such large NP contributions to the WCs are really observed in the future experiments at Belle II and LHCb Upgrade, this could be the imprint of QFV SUSY (the MSSM with general QFV).
Motivated by the fact that the Dirac phase in the PMNS matrix is the only CP-violating parameter in the leptonic sector that can be measured in neutrino oscillation experiments, we examine the possibility that it is the dominant source of CP violatio n for leptogenesis caused by the out-of-equilibrium decays of heavy singlet fermions. We do so within a low-scale extended type-I seesaw model, featuring two Standard Model singlet fermions per family, in which lepton number is approximately conserved such that the heavy singlet neutrinos are pseudo-Dirac. We find that this produces a predictive model of leptogenesis. Our results show that for low-scale thermal leptogenesis, a pure inverse-seesaw scenario fails to produce the required asymmetry, even accounting for resonance effects, because wash-out processes are too efficient. Dirac-phase leptogenesis is, however, possible when the linear seesaw term is switched on, with the aid of the resonance contributions naturally present in the model. Degenerate and hierarchical spectra are considered -- both can achieve Dirac-phase leptogenesis, although the latter is more constrained. Finally, although unable to probe the parameter space of Dirac-phase leptogenesis, the contributions to unitarity violation of the PMNS matrix, collider constraints and charged-lepton flavour-violating processes are calculated and we further estimate the impact of the future experiments MEG-II and COMET for such models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا