ترغب بنشر مسار تعليمي؟ اضغط هنا

Charged Lepton Decays L_i to L_j + gamma, Leptogenesis CP-Violating Parameters and Majorana Phases

86   0   0.0 ( 0 )
 نشر من قبل Tetsuo Shindou
 تاريخ النشر 2006
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyse the dependence of the rates of the LFV charged lepton decays mu to e + gamma, tau to e + gamma, tau to mu + gamma (l_i to l_j + gamma) and their ratios, predicted in the class of SUSY theories with see-saw mechanism of nu-mass generation and soft SUSY breaking with universal boundary conditions at the GUT scale, on the Majorana CP-violation phases in the PMNS neutrino mixing matrix and the ``leptogenesis CP-violating (CPV) parameters. The case of quasi-degenerate in mass heavy Majorana neutrinos is considered. The analysis is performed for normal hierarchical (NH), inverted hierarchical (IH) and quasi-degenerate (QD) light neutrino mass spectra. We show, in particular, that for NH and IH nu-mass spectrum and negligible lightest neutrino mass, all three l_i to l_j + gamma decay branching ratios, BR(l_i to l_j + gamma), depend on one Majorana phase, one leptogenesis CPV parameter and on the 3-neutrino oscillation parameters; if the CHOOZ mixing angle theta_13 is sufficiently large, they depend on the Dirac CPV phase in the PMNS matrix. The ``double ratios R(21/31) sim BR(mu to e + gamma)/BR(tau to e + gamma) and R(21/32) sim BR(mu to e + gamma)/BR(tau to mu + gamma) are determined by these parameters. The same Majorana phase enters into the NH and IH expressions for the effective Majorana mass in neutrinoless double beta decay, <m>.



قيم البحث

اقرأ أيضاً

We consider the MSSM with see-saw mechanism of neutrino mass generation and soft SUSY breaking with flavour-universal boundary conditions at the GUT scale, in which the lepton flavour violating (LFV) decays muto e + gamma, tauto mu + gamma, etc.,are predicted with rates that can be within the reach of present and planned experiments. These predictions depend critically on the matrix of neutrino Yukawa couplings bf{Y_{ u}} which can be expressed in terms of the light and heavy right-handed (RH) neutrino masses, neutrino mixing matrix U_{PMNS}, and an orthogonal matrix bf{R}. We investigate the effects of Majorana CP-violation phases in U_{PMNS}, and of the RG running of light neutrino masses and mixing angles from M_Z to the RH Majorana neutrino mass scale M_R, on the predictions for the rates of LFV decays muto e + gamma, tau to mu + gamma and tauto e + gamma. Results for neutrino mass spectrum with normal hierarchy, values of the lightest u-mass in the range 0 leq m_1 leq 0.30 eV, and quasi-degenerate heavy RH Majorana neutrinos in the cases of bf{R} = bf{1} and complex matrix bf{R} are presented. We find that the effects of the Majorana CP-violation phases and of the RG evolution of neutrino mixing parameters can change by few orders of magnitude the predicted rates of the LFV decays mu to e + gamma and tau to e + gamma. The impact of these effects on the tau to mu + gamma decay rate is typically smaller and only possible for m_1 > 0.10 eV. If the RG running effects are negligible, in a large region of soft SUSY breaking parameter space the ratio of the branching ratios of the mu to e + gamma and tau to e + gamma (tau to mu + gamma) decays is entirely determined in the case of bf{R} cong bf{1} by the values of the neutrino mixing parameters at M_Z.
The LFV charged lepton decays mu to e + gamma, tau to e + gamma and tau to mu + gamma and thermal leptogenesis are analysed in the MSSM with see-saw mechanism of neutrino mass generation and soft SUSY breaking with universal boundary conditions. The case of hierarchical heavy Majorana neutrino mass spectrum, M_1 << M_2 << M_3, is investigated. Leptogenesis requires M_1 > 10^9 GeV. Considering the natural range of values of the heaviest right-handed Majorana neutrino mass, M_3 > 5*10^{13} GeV, and assuming that the soft SUSY breaking universal gaugino and/or scalar masses have values in the range of few 100 GeV, we derive the combined constraints, which the existing stringent upper limit on the mu to e + gamma decay rate and the requirement of successful thermal leptogenesis impose on the neutrino Yukawa couplings, heavy Majorana neutrino masses and SUSY parameters. Results for the three possible types of light neutrino mass spectrum -- normal and inverted hierarchical and quasi-degenerate -- are obtained.
184 - Xiaofang Han 2011
In the simplest little Higgs model the new flavor-changing interactions between heavy neutrinos and the Standard Model leptons can generate contributions to some lepton flavor violating decays of $Z$-boson at one-loop level, such as $Z to tau^{pm}mu^ {mp}$, $Zto tau^{pm}e^{mp}$, and $Z to mu^{pm}e^{mp}$. We examine the decay modes, and find that the branching ratios can reach $10^{-7}$ for the three decays, which should be accessible at the Giga$Z$ option of the ILC.
We study the lepton flavor violating (LFV) decays Z-> l_i l_j (l_{i,j}=e,mu,tau) in the framework of the minimal 331 model. The main contributions arise at the one-loop level via a doubly charged bilepton with general LFV couplings. We obtain an esti mate for the corresponding branching ratios by using the bounds on the LFV couplings of the doubly charged bilepton from the current experimental limits on the decays l_i-> l_jgamma and l_i-> l_j l_k l_k. A bound on the bilepton mass is also obtained through the current limit on the anomalous magnetic moment of the muon. It is found that the bilepton contributions to LFV Z decays are not expected to be at the reach of experimental detection. In particular, the branching ratio for the Z-> mu tau decay is below the 10^{-10} level for a bilepton mass of the order of 500 GeV.
A model independent analysis of the leptonic Dirac CP-violating phase ({delta}) is presented. The analysis uses the experimentally determined values of the mixing angles in the lepton mixing matrix in order to explore the allowed values for {delta} a nd possible general forms for the charged lepton mixing matrix. This is done under two general assumptions: 1) that the mixing matrix in the neutrino sector is the so-called tribimaximal matrix and hence the non zero value for {theta}13 arises due to the mixing matrix in the charged lepton sector and 2) the charged lepton mixing matrix is parametrized in terms of three angles and one phase. It is found that any value of {delta} is still consistent with the data and that, considering the assumptions above, regardless of the value for {delta}, the 1-3 mixing angle in the charged lepton sector is small but non zero and the 2-3 mixing angle can take values in only two possible small ranges around 0 and {pi}/2 respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا