ﻻ يوجد ملخص باللغة العربية
We add a nonstandard higgs into the traditional bosonic part of electroweak chiral Lagrangian, in purpose of finding out the contribution to EWCL coefficients from processes with internal line higgs particle. To construct the effective Lagrangian with higgs, we use low energy expansion scheme and write down all the independent terms conserving $SU(2)times U_Y(1)$ symmetry in the nonlinear representation which we show is equivalent to the linear representation. Then we integrate out higgs using loop expansion technique at 1-loop level, contributions from all possible terms are obtained. We find three terms, $mathcal{L}_5$, $mathcal{L}_7$, $mathcal{L}_{10}$ in EWCL are important, for which the contributions from higgs can be further expressed in terms of higgs partial decay width $Gamma_{hto ZZ}$ and $Gamma_{hto WW}$. Higg mass dependence of the coefficients in EWCL are discussed.
A revised and complete list of the electroweak chiral lagrangian operators up to dimension-four is provided. The connection of these operators to the $S$, $T$ and $U$ parameters and the parameters describing the triple gauge boson vertices $WWgamma$
The compact form of the electroweak chiral Lagrangian is a reformulation of its original form and is expressed in terms of chiral rotated electroweak gauge fields, which is crucial for relating the information of underlying theories to the coefficien
The Standard Model of fundamental interactions, albeit an incredibly elegant and successful theory, lacks explanations for some experimental and theoretical open questions. Interestingly, many of these problems seem to be related to the electroweak s
The Twin Higgs model is the preeminent example of a theory of neutral naturalness, where the new particles that alleviate the little hierarchy problem are Standard Model (SM) singlets. The most promising collider search strategy, based on rare Higgs
We discuss the sensitivity of the $e^+ e^- rightarrow W^+ W^-$ cross section at a future $e^+ e^-$ collider with $sqrt{s}=500$GeV to the non-decoupling effects of a techni-$rho$ like vector resonance. The non-decoupling effects are parametrized by th