ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase transitions in the early and the present Universe

94   0   0.0 ( 0 )
 نشر من قبل Hector de Vega
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The evolution of the Universe is the ultimate laboratory to study fundamental physics across energy scales that span about 25 orders of magnitude: from the grand unification scale through particle and nuclear physics scales down to the scale of atomic physics. The standard models of cosmology and particle physics provide the basic understanding of the early and present Universe and predict a series of phase transitions that occurred in succession during the expansion and cooling history of the Universe. We survey these phase transitions, highlighting the equilibrium and non-equilibrium effects as well as their observational and cosmological consequences. We discuss the current theoretical and experimental programs to study phase transitions in QCD and nuclear matter in accelerators along with the new results on novel states of matter as well as on multi- fragmentation in nuclear matter. A critical assessment of similarities and differences between the conditions in the early universe and those in ultra- relativistic heavy ion collisions is presented. Cosmological observations and accelerator experiments are converging towards an unprecedented understanding of the early and present Universe.



قيم البحث

اقرأ أيضاً

In this work an update of the cosmological role and place of the chiral tensor particles in the Universe history is provided. We discuss an extended model with chiral tensor particles. The influence of these particles on the early Universe evolution is studied. Namely, the increase of the Universe expansion rate caused by the additional particles in this extended model is calculated, their characteristic interactions with the particles of the hot Universe plasma are studied and the corresponding times of their creation, scattering, annihilation and decay are estimated for accepted values of their masses and couplings, based on the recent experimental constraints. The period of abundant presence of these particles in the Universe evolution is determined.
We consider an alternative mechanism for the production of the cosmic microwave background (CMB) radiation. It is basically due to vacuum pair creation (VPC) of vector bosons (W and Z) as a consequence of a rapid W and Z mass generation during the el ectroweak phase transition in the early Universe. The mechanism is as follows: after their pair crreation, the vector bosons may either annihilate directly into photons or decay into leptons and quarks which subsequently annihilate as lepton-antilepton and quark-antiquark pairs into photons. Preliminary estimates show that the number of CMB photons obtained this way can be sufficient to explain the presently observed CMB photon density. In this contribution we present an exactly soluble model for vacuum pair creation kinetics.
We assume that current state of the Universe can be described by the Inert Doublet Model, containing two scalar doublets, one of which is responsible for EWSB and masses of particles and the second one having no couplings to fermions and being respon sible for dark matter. We consider possible evolutions of the Universe to this state during cooling down of the Universe after inflation. We found that in the past Universe could pass through phase states having no DM candidate. In the evolution via such states in addition to a possible EWSB phase transition (2-nd order) the Universe sustained one 1-st order phase transition or two phase transitions of the 2-nd order.
194 - Seoktae Koh , Bin Hu 2009
We study the dynamics of a timelike vector field which violates Lorentz invariance when the background spacetime is in an accelerating phase in the early universe. It is shown that a timelike vector field is difficult to realize an inflationary phase , so we investigate the evolution of a vector field within a scalar field driven inflation model. And we calculate the power spectrum of the vector field without considering the metric perturbations. While the time component of the vector field perturbations provides a scale invariant spectrum when $xi = 0$, where $xi$ is a nonminimal coupling parameter, both the longitudinal and transverse perturbations give a scale invariant spectrum when $xi = 1/6$.
We study the induced primordial gravitational waves (GW) coming from the effect of scalar perturbation on the tensor perturbation at the second order of cosmological perturbation theory. We use the evolution of the standard model degrees of freedom w ith respect to temperature in the early Universe to compute the induced gravitational waves bakcground. Our result shows that the spectrum of the induced GW is affected differently by the standard model degrees of freedom than the GW coming from first order tensor perturbation. This phenomenon is due to the presence of scalar perturbations as a source for tensor perturbations and it is effective around the quark gluon deconfinement and electroweak transition. In case of considering a scalar spectral index larger than one at small scales or a non-Gaussian curvature power spectrum this effect can be observed by gravitational wave observatories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا