ترغب بنشر مسار تعليمي؟ اضغط هنا

Advantage of U+U over Au+Au collisions at constant beam energy

98   0   0.0 ( 0 )
 نشر من قبل Chandra Nepali
 تاريخ النشر 2006
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Collisions of deformed uranium nuclei are studied in a Monte-Carlo Glauber model. For U+U at zero impact parameter (b=0) in the most favorable orientation (tip-to-tip), the transverse particle density (charged-particle rapidity density per weighted transverse area of the initial participant zone) increases by about 35% compared to Au+Au at b=0. To estimate the advantage of U+U over Au+Au in the context of real experiments at the Relativistic Heavy Ion Collider, we examine the effect of a range of centrality cuts on the event sample. In terms of the transverse particle density, the predicted advantage of U+U is about 16%.



قيم البحث

اقرأ أيضاً

Collisions between prolate uranium nuclei are used to study how particle production and azimuthal anisotropies depend on initial geometry in heavy-ion collisions. We report the two- and four-particle cumulants, $v_2{2}$ and $v_2{4}$, for charged hadr ons from U+U collisions at $sqrt{s_{rm NN}}$ = 193 GeV and Au+Au collisions at $sqrt{s_{rm NN}}$ = 200 GeV. Nearly fully overlapping collisions are selected based on the amount of energy deposited by spectators in the STAR Zero Degree Calorimeters (ZDCs). Within this sample, the observed dependence of $v_2{2}$ on multiplicity demonstrates that ZDC information combined with multiplicity can preferentially select different overlap configurations in U+U collisions. An initial-state model with gluon saturation describes the slope of $v_2{2}$ as a function of multiplicity in central collisions better than one based on Glauber with a two-component multiplicity model.
Multifragment disintegrations, measured for central Au + Au collisions at E/A = 35 MeV, are analyzed with the Statistical Multifragmentation Model. Charge distributions, mean fragment energies, and two-fragment correlation functions are well reproduc ed by the statistical breakup of a large, diluted and thermalized system slightly above the multifragmentation threshold.
The signals theoretically predicted for the occurrence of a critical behavior (conditional moments of charge distributions, Campi scatter plot, fluctuations of the size of the largest fragment, power law in the charge distribution, intermittency) hav e been found for peripheral events in the reaction Au+Au at 35 MeV/u. The same signals have been studied with a dynamical model which foresees phase transition, like the Classical Molecular Dynamics.
196 - S. Ahmad , M. Farooq , S. Bashir 2014
Event by event fluctuations of particle multiplicities and their ratios are considered to be sensitive probes to the exotic phenomena in high energy heavy ion collisions like phase transtion or the occurence of critical point. These phenomena might t ake place at different time after the collision based on fulfilling the required conditions at a particular time. Fluctuations are therefore expected to show non-monotonic behaviour at the of time of occurence of these phenomena. Experimentally, fluctuations are measured at freezeout. In this work, using the hybrid version of the UrQMD event generator, we have investigated the propagation of fluctuations of particle multiplicities, their ratios and the ratio of total positive and negative charges in AuAu collisions at E_{lab} < 90 AGeV. Two commonly used experimental measures i.e., {sigma^2}/mean and { u_{dyn}} have been used in the analysis in a given acceptance. The hybrid model, i.e., UrQMD with hydrodynamic evolution has been used to study the effect of hydrodynamic evolution on these conventional fluctuation measures. It is observed that the fluctuations as measured by {sigma^2}/mean and { u_{dyn}} gets reduced considerably at freezeout. The dominat structures present at the initial stage of the evolution get smoothen out. However, the energy dependence of the fluctuations remain preserved till the freezeout. The hydrodynamic evolution of the model with chiral equation of state shows considerably higher fluctuation at lower collision energy as compared to pure hadronic transport version or the hybrid version with hadronic equation of state. The time evolution of the higher order moments of net-proton distributios for particles in a specified coverage showed similar behaviour.
Multifragment disintegration has been measured with a high efficiency detection system for the reaction $Au + Au$ at $E/A = 35 MeV$. From the event shape analysis and the comparison with the predictions of a many-body trajectories calculation the dat a, for central collisions, are compatible with a fast emission from a unique fragment source.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا