ﻻ يوجد ملخص باللغة العربية
In order to include a correction by the Coulomb interaction in Bose-Einstein correlations (BEC), the wave function for the Coulomb scattering were introduced in the quantum optical approach to BEC in the previous work. If we formulate the amplitude written by Coulomb wave functions according to the diagram for BEC in the plane wave formulation, the formula for $3pi^-$BEC becomes simpler than that of our previous work. We re-analyze the raw data of $3pi^-$BEC by NA44 and STAR Collaborations by this formula. Results are compared with the previous ones.
Using effective formulas we analyze the Bose-Einstein correlations (BEC) data corrected for Coulomb interactions provided by STAR Collaboration and the quasi-corrected data (raw data with acceptance correction etc) on 2pi and 3pi BEC by using Coulomb
We compute the third-order correction to the S-wave quarkonium wave functions |psi_n(0)|^2 at the origin from non-Coulomb potentials in the effective non-relativistic Lagrangian. Together with previous results on the Coulomb correction and the ultras
We analyze various data of multiplicity distributions by means of the Modified Negative Binomial Distribution (MNBD) and its KNO scaling function, since this MNBD explains the oscillating behavior of the cumulant moment observed in e^+e^- annihilatio
We present an analytical formula for the Bose-Einstein correlations (BEC) which includes effects of both Coulomb and strong final stateinteractions (FSI). It was obtained by using Coulomb wave function together with the scattering partial wave amplit
The new data on k_t distributions obtained at RHIC are analysed by means of selected models of statistical and stochastic origin in order to estimate their importance in providing new information on hadronization process, in particular on the value of the temperature at freeze-out to hadronic phase.