ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct detection of neutralino dark matter in supergravity

96   0   0.0 ( 0 )
 نشر من قبل David G. Cerdeno
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The direct detection of neutralino dark matter is analysed in general supergravity scenarios, where non-universal soft scalar and gaugino masses can be present. In particular, the theoretical predictions for the neutralino-nucleon cross section are studied and compared with the sensitivity of dark matter detectors. We take into account the most recent astrophysical and experimental constraints on the parameter space, including the current limit on B(Bs-> mu+ mu-). The latter puts severe limitations on the dark matter scattering cross section, ruling out most of the regions that would be within the reach of present experiments. We show how this constraint can be softened with the help of appropriate choices of non-universal parameters which increase the Higgsino composition of the lightest neutralino and minimise the chargino contribution to the b->s transition.



قيم البحث

اقرأ أيضاً

82 - J. Edsjo 1997
Neutralino dark matter, and in particular different aspects of its detection at neutrino telescopes, has been studied within the Minimal Supersymmetric extension of the Standard Model, the MSSM. The relic density of neutralinos has been calculated us ing sophisticated routines for integrating the annihilation cross section and the Boltzmann equation. As a new element, so called coannihilation processes between the lightest neutralino and the heavier neutralinos and charginos have also been included for any neutralino mass and composition. The detection rates at neutrino telescopes have been evaluated for neutralino annihilation in both the Sun and the Earth using detailed Monte Carlo simulations of the whole chain of processes from the neutralino annihilation products in the core of the Sun or the Earth to detectable muons at a neutrino telescope. A comparison with other searches for supersymmetry at accelerators and direct dark matter searches is also given. The signal muon fluxes that current and future neutrino telescopes can probe and the improvement in sensitivity that can be achieved with angular and/or energy resolution of the neutrino-induced muons has also been investigated. The question of whether the neutralino mass can be extracted from the width of the muon angular distribution, if a signal flux is observed, has also been addressed.
We revisit indirect detection possibilities for neutralino dark matter, emphasizing the complementary roles of different approaches. While thermally produced dark matter often requires large astrophysical boost factors to observe antimatter signals, the physically motivated alternative of non-thermal dark matter can naturally provide interesting signals, for example from light wino or Higgsino dark matter. After a brief review of cosmic ray propagation, we discuss signals for positrons, antiprotons, synchrotron radiation and gamma rays from wino annihilation in the galactic halo, and examine their phenomenology. For pure wino dark matter relevant to the LHC, PAMELA and GLAST should report signals.
In the supersymmetric (SUSY) standard model, the lightest neutralino may be the lightest SUSY particle (LSP), and it is is a candidate of the dark matter in the universe. The LSP dark matter might be produced by the non-thermal process such as heavy particle decay after decoupling of the thermal relic LSP. If the produced LSP is relativistic, and does not scatter enough in the thermal bath, the neutralino LSP may contribute as the warm dark matter (WDM) to wash out the small scale structure of O(0.1) Mpc. In this letter we calculate the energy reduction of the neutralino LSP in the thermal bath and study whether the LSP can be the WDM. If temperature of the production time T_I is smaller than 5MeV, the bino-like LSP can be the WDM and may contribute to the small-scale structure of O(0.1) Mpc. The Higgsino-like LSP might also work as the WDM if T_I< 2MeV. The wino-like LSP cannot be the WDM in the favoured parameter region.
In this paper, we perform a full next-to-leading order (NLO) QCD calculation of neutralino scattering on protons or neutrons in the MSSM. We match the results of the NLO QCD calculation to the scalar and axial-vector operators in the effective field theory approach. These govern the spin-independent and spin-dependent detection rates, respectively. The calculations have been performed for general bino, wino and higgsino decompositions of neutralino dark matter and required a novel tensor reduction method of loop integrals with vanishing relative velocities and Gram determinants. Numerically, the NLO QCD effects are shown to be of at least of similar size and sometimes larger than the currently estimated nuclear uncertainties. We also demonstrate the interplay of the direct detection rate with the relic density when consistently analyzed with the program $mathtt{DM@NLO}$.
97 - D.G. Cerdeno , A. Cheek , E. Reid 2018
In this work we introduce RAPIDD, a surrogate model that speeds up the computation of the expected spectrum of dark matter particles in direct detection experiments. RAPIDD replaces the exact calculation of the dark matter differential rate (which in general involves up to three nested integrals) with a much faster parametrization in terms of ordinary polynomials of the dark matter mass and couplings, obtained in an initial training phase. In this article, we validate our surrogate model on the multi-dimensional parameter space resulting from the effective field theory description of dark matter interactions with nuclei, including also astrophysical uncertainties in the description of the dark matter halo. As a concrete example, we use this tool to study the complementarity of different targets to discriminate simplified dark matter models. We demonstrate that RAPIDD is fast and accurate, and particularly well-suited to explore a multi-dimensional parameter space, such as the one in effective field theory approach, and scans with a large number of evaluations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا