ﻻ يوجد ملخص باللغة العربية
We suggest that the recently observed charmed scalar mesons $D_0^{0}(2308)$ (BELLE) and $D_0^{0,+}(2405)$ (FOCUS) are considered as different resonances. Using the QCD sum rule approach we investigate the possible four-quark structure of these mesons and also of the very narrow $D_{sJ}^{+}(2317)$, firstly observed by BABAR. We use diquak-antidiquark currents and work to the order of $m_s$ in full QCD, without relying on $1/m_c$ expansion. Our results indicate that a four-quark structure is acceptable for the resonances observed by BELLE and BABAR: $D_0^{0}(2308)$ and $D_{sJ}^{+}(2317)$ respectively, but not for the resonances observed by FOCUS: $D_0^{0,+}(2405)$.
Within the framework of covariant confined quark model, we compute the transition form factors of $D$ and $D_s$ mesons decaying to light scalar mesons $f_0(980)$ and $a_0(980)$. The transition form factors are then utilized to compute the semileptoni
Charmed dibaryon states with the spin-parity $J^{pi}=0^+$, $1^+$, and $2^+$are predicted for the two-body $Y_cN$ ($=Lambda_c$, $Sigma_c$, or $Sigma^*_c$) systems. We employ the complex scaling method for the coupled channel Hamiltonian with the $Y_cN
We carry out an exploratory study of the isospin one a0(980) and the isospin one-half kappa scalar mesons using Nf=2+1+1 Wilson twisted mass fermions at one lattice spacing. The valence strange quark is included as an Osterwalder-Seiler fermion with
Using the newly measured masses of $B_c(1S)$ and $B_c(2S)$ from the CMS Collaboration and the $1S$ hyperfine splitting determined from the lattice QCD as constrains, we calculate the $B_c$ mass spectrum up to the $6S$ multiplet with a nonrelativistic
In a recent paper by N. Santowsky et al. [Phys. Rev. D 102, 056014 (2020)], covariant coupled equations were derived to describe a tetraquark in terms of a mix of four-quark states $2q 2bar{q}$ and two-quark states $qbar{q}$. These equations were exp