ﻻ يوجد ملخص باللغة العربية
In the context of the littlest Higgs$(LH)$ model, we study the process $ e^{+}e^{-}to tbar{t}$. We find that the new gauge bosons $Z_{H}$ and $B_{H}$ can produce significant correction effects on this process, which can be further enhanced by the suitably polarized beams. In most of the parameter space preferred by the electroweak precision data, the absolute value of the relative correction parameter $R_{B_{H}}$ is larger than 5%. As long as $1TeVleq M_{Z_{H}}leq 1.5TeV$ and $0.3leq cleq 0.5,$ the absolute value of the relative correction parameter $R_{Z_{H}}$ is larger than 5%. With reasonable values of the parameters of the $LH$ model, the possible signals of the new gauge bosons $B_{H}$ and $Z_{H}$ can be detected via the process $ e^{+}e^{-} to tbar{t}$ in the future $LC$ experiments with the c.m. energy $sqrt{S}=800GeV$. $B_{H}$ exchange and $Z_{H}$ exchange can generate significantly corrections to the forward-backward asymmetry $A_{FB}(tbar{t})$ only in small part of the parameter space.
The physics prospect at future linear $e^{+}e^{-}$ colliders for the study of the Higgs triple self-coupling via the process of $e^{+}e^{-}to ZHH$ is investigated. In this paper, we calculate the contribution of the new particles predicted by the lit
The littlest Higgs model is the most economical one among various little Higgs models. In the context of the littlest Higgs(LH) model, we study the process $e^{-}gammato u_{e}W^{-}H$ and calculate the contributions of the LH model to the cross secti
The recently discovered scalar resonance at the LHC is now almost confirmed to be a Higgs Boson, whose CP properties are yet to be established. At the ILC with and without polarized beams, it may be possible to probe these properties at high precisio
With the high energy and luminosity, the planned ILC has the considerable capability to probe the new heavy particles predicted by the new physics models. In this paper, we study the potential to discover the lightest new gauge boson $B_{H}$ of the l
In this paper we investigate methods to study the $tbar{t}$ Higgs coupling. The spin and CP properties of a Higgs boson are analysed in a model-independent way in its associated production with a $tbar{t}$ pair in high-energy $e^+e^-$ collisions. We