The impact of large-distance contributions on the behaviour of the slopes of the spin-non-flip and of the spin-flip amplitudes is analysed. It is shown that the long tail of the hadron potential in impact parameter space leads to a larger value of the slope for the spin-flip amplitude (without the kinematic factor sqrt(|t|)) than for the spin-non-flip amplitude. This effect is taken into account in the calculation of the analysing power in proton-nucleus reactions at high energies.
Higgs singlet superfields are usually present in most extensions of the Minimal Supersymmetric Standard Model (MSSM) that address the mu-problem, such as the Next-to-Minimal Supersymmetric Standard Model (NMSSM) and the Minimal Nonminimal Supersymmet
ric Standard Model (MNSSM). Employing a gauge- and flavour-covariant effective Lagrangian formalism, we show how the singlet Higgs bosons of such theories can have significant contributions to B-meson flavour-changing neutral current (FCNC) observables for large values of $tanbeta stackrel{>}{{}_sim} 50$ at the 1-loop level. Illustrative results are presented including effects on the B_s and B_d mass differences and on the rare decay $B_stomu^+mu^-$. In particular, we find that depending on the actual value of the lightest singlet pseudoscalar mass in the NMSSM, the branching ratio for $B_stomu^+mu^-$ can be enhanced or even suppressed with respect to the Standard Model prediction by more than one order of magnitude.
We calculate the amplitude of the rare flavour-changing neutral-current decay $Bto piell^+ell^-$ at large recoil of the pion. The nonlocal contributions in which the weak effective operators are combined with the electromagnetic lepton-pair emission
are systematically taken into account. These amplitudes are calculated at off-shell values of the lepton-pair mass squared, $q^2<0$, employing the operator-product expansion, QCD factorization and light-cone sum rules. The results are fitted to hadronic dispersion relations in $q^2$, including the intermediate vector meson contributions. The dispersion relations are then used in the physical region $q^2>0$. Our main result is the process-dependent addition $Delta C^{(Bpi)}_9(q^2)$ to the Wilson coefficient $C_9$ obtained at $4m_ell^2<q^2lesssim m_{J/psi}^2$. Together with the $Bto pi$ form factors from light-cone sum rules, this quantity is used to predict the differential rate, direct CP-asymmetry and isospin asymmetry in $Bto piell^+ell^-$. We also estimate the total rate of the rare decay $Bto pi ubar{ u}$.
We predict W and Z transverse momentum distributions from proton-proton and nuclear collisions at RHIC and LHC. A resummation formalism with power corrections to the renormalization group equations is used. The dependence of the resummed QCD results
on the non-perturbative input is very weak for the systems considered. Shadowing effects are discussed and found to be unimportant at RHIC, but important for LHC. We study the enhancement of power corrections due to multiple scattering in nuclear collisions and numerically illustrate the weak effects of the dependence on the nuclear mass.
We present predictions on the total cross sections and on the ratio of the real part to the imaginary part of the elastic amplitude (rho parameter) for present and future pp and pbar p colliders, and on total cross sections for gamma p -> hadrons at
cosmic-ray energies and for gamma gamma -> hadrons up to sqrt(s)=1 TeV. These predictions are based on a study of many possible analytic parametrisations and invoke the current hadronic dataset at t=0. The uncertainties on total cross sections, including the systematic theoretical errors, reach 1% at RHIC, 3% at the Tevatron, and 10% at the LHC, whereas those on the rho parameter are respectively 10%, 17%, and 26%.
Higgs singlet superfields, usually present in extensions of the Minimal Supersymmetric Standard Model (MSSM) which address the $mu$-problem, such as the Next-to-Minimal Supersymmetric Standard Model (NMSSM) and the Minimal Nonminimal Supersymmetric S
tandard Model (mnSSM), can have significant contributions to $B$-meson flavour-changing neutral current observables for large values of $tanbeta gsim 50$. Illustrative results are presented including effects on the $B_s$ and on the rare decay $B_stomu^+mu^-$. In particular, we find that in the NMSSM, the branching ratio for $B_stomu^+mu^-$ can be enhanced or even suppressed with respect to the Standard Model prediction by more than one order of magnitude.