ﻻ يوجد ملخص باللغة العربية
The electromagnetic form factors of the proton are obtained using a particular realization of QCD in the large $N_c$ limit (${QCD}_{infty}$), which sums up the infinite number of zero-width resonances to yield an Eulers Beta function (Dual-${QCD}_{infty}$). The form factors $F_1(q^2)$ and $F_2(q^2)$, as well as $G_M(q^2)$ agree very well with reanalyzed space-like data in the whole range of momentum transfer. In addition, the predicted ratio $mu_p G_E/G_M$ is in good agreement with recent polarization transfer measurements at Jefferson Lab.
The electromagnetic form factors of the proton and the neutron are computed within lattice QCD using simulations with quarks masses fixed to their physical values. Both connected and disconnected contributions are computed. We analyze two new ensembl
An updated determination is presented of the electric and magnetic form factors of the proton, in the framework of a dual-model realization of QCD in the limit of an infinite number of colors. Very good agreement with data is obtained in the space-li
We present results for the nucleon electromagnetic form factors, including the momentum transfer dependence and derived quantities (charge radii and magnetic moment). The analysis is performed using O(a) improved Wilson fermions in Nf=2 QCD measured
We present results on the Omega baryon electromagnetic form factors using $N_f=2+1$ domain-wall fermion configurations for three pion masses in the range of about 350 to 300 MeV. We compare results obtained using domain wall fermions with those of a
We present results for the isovector electromagnetic form factors of the nucleon computed on the CLS ensembles with $N_f=2+1$ flavors of $mathcal{O}(a)$-improved Wilson fermions and an $mathcal{O}(a)$-improved vector current. The analysis includes en