ترغب بنشر مسار تعليمي؟ اضغط هنا

Electroweak symmetry breaking in supersymmetric models with heavy scalar superpartners

129   0   0.0 ( 0 )
 نشر من قبل Adam Falkowski
 تاريخ النشر 2004
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a novel mechanism of electroweak symmetry breaking in supersymmetric models, as the one recently discussed by Birkedal, Chacko and Gaillard, in which the Standard Model Higgs doublet is a pseudo-Goldstone boson of some global symmetry. The Higgs mass parameter is generated at one loop level by two different, moderately fine-tuned sources of the global symmetry breaking. The mechanism works for scalar superpartner masses of order 10 TeV, but gauginos can be light. The scale at which supersymmetry breaking is mediated to the visible sector has to be low, of order 100 TeV. Fine-tuning in the scalar potential is at least two orders of magnitude smaller than in the MSSM with similar soft scalar masses. The physical Higgs boson mass is (for $tanbetagg1$) in the range 120-135 GeV.



قيم البحث

اقرأ أيضاً

55 - Radovan Dermisek 2016
A model is presented in which O(10 TeV) stop masses, typically required by the Higgs boson mass in supersymmetric models, do not originate from soft supersymmetry breaking terms that would drive the Higgs mass squared parameter to large negative valu es but rather from the mixing with vectorlike partners. Their contribution to the Higgs mass squared parameter is reduced to threshold corrections and, thus, it is one loop suppressed compared to usual scenarios. New fermion and scalar partners of the top quark with O(10 TeV) masses are predicted.
201 - D.-W. Jung , O.C.W. Kong 2009
Based on our idea of an alternative supersymmetrization of the Nambu--Jona-Lasinio model for dynamical symmetry breaking, we analyze the resulted new model with a holomorphic dimension-five operator in the superpotential. The approach provides a new direction for modeling dynamical symmetry breaking in a supersymmetric setting. In particular, we adopt the idea to formulate a model that gives rise to the Minimal Supersymmetric Standard Model as the low energy effective theory with both Higgs superfields as composites. A renormalization group analysis is performed to establish the phenomenological viability of the scenario, with admissible background scale that could go down to the TeV scale. We give the Higgs mass range predicted.
Radiative symmetry breaking (RSB) is a theoretically appealing framework for the generation of mass scales through quantum effects. It can be successfully implemented in models with extended scalar and gauge sectors. We provide a systematic analysis of RSB in such models: we review the common approximative methods of studying RSB, emphasising their limits of applicability and discuss the relevance of the relative magnitudes of tree-level and loop contributions as well as the dependence of the results on the renormalisation scale. The general considerations are exemplified within the context of the conformal Standard Model extended with a scalar doublet of a new SU(2)$_X$ gauge group, the so-called SU(2)cSM. We show that various perturbative methods of studying RSB may yield significantly different results due to renormalisation-scale dependence. Implementing the renormalisation-group (RG) improvement method recently developed in arXiv:1801.05258, which is well-suited for multi-scale models, we argue that the use of the RG improved effective potential can alleviate this scale dependence providing more reliable results.
In this paper we study a new class of supersymmetric models that can explain a 125 GeV Higgs without fine-tuning. These models contain additional `auxiliary Higgs fields with large tree-level quartic interaction terms but no Yukawa couplings. These h ave electroweak-breaking vacuum expectation values, and contribute to the VEVs of the MSSM Higgs fields either through an induced quartic or through an induced tadpole. The quartic interactions for the auxiliary Higgs fields can arise from either D-terms or F-terms. The tadpole mechanism has been previously studied in strongly-coupled models with large D-terms, referred to as `superconformal technicolor. The perturbative models studied here preserve gauge coupling unification in the simplest possible way, namely that all new fields are in complete SU(5) multiplets. The models are consistent with the observed properties of the 125 GeV Higgs-like boson as well as precision electroweak constraints, and predict a rich phenomenology of new Higgs states at the weak scale. The tuning is less than 10% in almost all of the phenomenologically allowed parameter space. If electroweak symmetry is broken by an induced tadpole, the cubic and quartic Higgs self-couplings are significantly smaller than in the standard model.
We present a model of electroweak symmetry breaking in a warped extra dimension where electroweak symmetry is broken at the UV (or Planck) scale. An underlying conformal symmetry is broken at the IR (or TeV) scale generating masses for the electrowea k gauge bosons without invoking a Higgs mechanism. By the AdS/CFT correspondence the W,Z bosons are identified as composite states of a strongly-coupled gauge theory, suggesting that electroweak symmetry breaking is an emergent phenomenon at the IR scale. The model satisfies electroweak precision tests with reasonable fits to the S and T parameter. In particular the T parameter is sufficiently suppressed since the model naturally admits a custodial SU(2) symmetry. The composite nature of the W,Z-bosons provide a novel possibility of unitarizing WW scattering via form factor suppression. Constraints from LEP and the Tevatron as well as discovery opportunities at the LHC are discussed for these composite electroweak gauge bosons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا