ﻻ يوجد ملخص باللغة العربية
In this paper we investigate the determination of the coupling structure of a Higgs boson at the LHC using angular correlations in the decay chain H -> ZZ -> 4l. We consider the most general couplings of a scalar to spin 1 particles and compare the angular correlations of the decay products using a maximum likelihood method. We use the full information from the LO matrix element including all posible correlations between the decay angles. In our analysis we include all possible mixings between the different coupling structures. We conclude that the coupling structure can in general be determined using this approach. But it has to be noted, that for Higgs boson masses below the ZZ-threshold the analysis is statistically limited. For higher Higgs boson masses reasonably strong limits on non standard couplings can be achieved at the LHC using the full integrated luminosity of 300 fb^-1.
We study the indirect effects of new physics on the phenomenology of the recently discovered Higgs-like particle. In a model independent framework these effects can be parametrized in terms of an effective Lagrangian at the electroweak scale. In a th
We study the indirect effects of new physics on the phenomenology of the Higgs-like particle. Assuming that the recently observed state belongs to a light electroweak doublet scalar and that the SU(2)_L x U(1)_Y symmetry is linearly realized, we para
We review the study of the charged Higgs and top quark associated production at the LHC with the presence of an additional scalar doublet. Top quark spin effects are related to the Higgs fermion couplings through this process. The angular distributio
A common lore has arisen that beyond the Standard Model (BSM) particles, which can be searched for at current and proposed experiments, should have flavorless or mostly third-generation interactions with Standard Model quarks. This theoretical bias s
We study the possibility of discovering neutral scalar Higgs bosons in the $U(1)$-extended supersymmetric standard model (USSM) at the CERN Large Hadron Collider (LHC), by examining their productions via the exotic quark loop in the gluon fusion proc