ﻻ يوجد ملخص باللغة العربية
By requiring the lower limit for the lightest right-handed neutrino mass, obtained in the baryogenesis from leptogenesis scenario, and a Dirac neutrino mass matrix similar to the up-quark mass matrix we predict small values for the $ u_e$ mass and for the matrix element $m_{ee}$ responsible of the neutrinoless double beta decay, $m_{ u_e}$ around $5cdot10^{-3}$ eV and $m_{ee}$ smaller than $ 10^{-3}$ eV, respectively. The allowed range for the mass of the heaviest right-handed neutrino is centered around the value of the scale of B - L breaking in the SO(10) gauge theory with Pati-Salam intermediate symmetry.
From the standard seesaw mechanism of neutrino mass generation, which is based on the assumption that the lepton number is violated at a large (~10exp(+15) GeV) scale, follows that the neutrinoless double-beta decay is ruled by the Majorana neutrino
We present a detailed discussion on neutrinoless double beta decay within a class of left-right symmetric models where neutrino mass originates by natural type-II seesaw dominance. The spontaneous symmetry breaking is implemented with doublets, tripl
We discuss a mechanism of neutrinoless double beta decay, where neutrinos of different flavours come into play. This is realized by effective flavour-violating scalar interactions. As one consequence, we find that within the normal mass ordering the
We propose a mechanism to suppress proton decay induced by dimension-5 operators in a supersymmetric SO(10) model. Proton lifetime is directly connected with the intermediate vacuum expectation value which is responsible for the seesaw mechanism. The
We study possible contribution of the Majorana neutrino mass eigenstate $ u_h$ dominated by a sterile neutrino component to neutrinoless double beta ($0 ubetabeta$) decay. From the current experimental lower bound on the $0 ubetabeta$-decay half-life