A Simple Statistical Model for QGP Phenomenology


الملخص بالإنكليزية

We propose a simple statistical model for the density of states for quarks and gluons in a QGP droplet, making the Thomas-Fermi model of the atom and the Bethe-model for the nucleons as templates for constructing the density of states for the quarks and gluons with due modifications for the `hot relativistic QGP state as against the `cold non-relativistic atom and nucleons, which were the subject of the earlier `forebears of the present proposal.We introduce `flow-parameters $gamma_{q,g}$ for the quarks and the gluons to take care of the hydrodynamical (plasma) flows in the QGP system as was done earlier by Peshier in his thermal potential for the QGP. By varying $gamma_{g}$ about the `Peshier-Value of $gamma_{q} = 1/6$, we find that the model allows a window in the parametric space in the range $8gamma_{q} leq gamma_{g} leq 12gamma_{q}$, with $gamma_{q} =1/6$ (Peshier-Value), when stable QGP droplets of radii $sim$ $6 fm$ appear at transition temperatures $100 MeV leq T leq 250 MeV$. The smooth cut at the phase boundary of the Free energy vs. droplet radius suggests a First - Order phase transition .On the whole the model offers a robust tool for studying QGP phenomenology as and when data from various ongoing experiments are available .

تحميل البحث