ﻻ يوجد ملخص باللغة العربية
From the Dirac sea concept, we infer that a body center cubic quark lattice exists in the vacuum. Adapting the electron Dirac equation, we get a special quark Dirac equation. Using its low-energy approximation, we deduced the rest masses of the quarks: m(u)=930 Mev, m(d)=930 Mev, m(s)=1110 Mev, m(c)=2270 Mev and m(b)=5530 Mev. We predict new excited quarks d$_S$(1390), u$_C$(6490) and d$_b$(9950).
Using a three step quantization and phenomenological formulae, we can deduce the rest masses and intrinsic quantum numbers (I, S, C, B and Q) of quarks from only one unflavored elementary quark family $epsilon$ with S = C = B = 0 in the vacuum. Then
Using phenomenological formulae, we can deduce the rest masses and intrinsic quantum numbers (I, S, C, B and Q) of quarks, baryons and mesons from only one unflavored elementary quark family. The deduced quantum numbers match experimental results exa
QCD Laplace sum-rules must satisfy a fundamental (Holder) inequality if they are to consistently represent an integrated hadronic cross-section. After subtraction of the pion-pole, the Laplace sum-rule of pion currents is shown to violate this fundam
Using phenomenological formulae, we deduce the masses and quantum numbers of the quarks from two elementary quarks ($epsilon_{u}$ and $epsilon_{d}$) first. Then using the sum laws and a binding energy formula, in terms of the qqq baryon model and SU(
We argue that it is possible to make a consistent picture of FNAL data including the production and decay of gluinos and squarks. The additional cross section is several pb, about the size of that for Standard Model (SM) top quark pair production. If