ﻻ يوجد ملخص باللغة العربية
The saturation of QCD chiral sum rules of the Weinberg-type is analyzed using ALEPH and OPAL experimental data on the difference between vector and axial-vector correlators (V-A). The sum rules exhibit poor saturation up to current energies below the tau-lepton mass. A remarkable improvement is achieved by introducing integral kernels that vanish at the upper limit of integration. The method is used to determine the value of the finite remainder of the (V-A) correlator, and its first derivative, at zero momentum: $bar{Pi}(0) = - 4 bar{L}_{10} = 0.0257 pm 0.0003 ,$ and $bar{Pi}^{prime}(0) = 0.065 pm 0.007 {GeV}^{-2}$. The dimension $d=6$ and $d=8$ vacuum condensates in the Operator Product Expansion are also determined: $<{cal {O}}_{6}> = -(0.004 pm 0.001) {GeV}^6,$ and $<{cal {O}}_{8}> = -(0.001 pm 0.006) {GeV}^8.$
One of the advantages of the finite energy sum rules is the fact that every operator in the operator product expansion series can be selected individually by the use of an appropriate kernel function which removes other operator poles. This character
The method of QCD sum rules at finite temperature is reviewed, with emphasis on recent results. These include predictions for the survival of charmonium and bottonium states, at and beyond the critical temperature for de-confinement, as later confirm
The up and down quark masses are determined from an optimized QCD Finite Energy Sum Rule (FESR) involving the correlator of axial-vector divergences, to five loop order in Perturbative QCD (PQCD), and including leading non-perturbative QCD and higher
Thermal Hilbert moment QCD sum rules are used to obtain the temperature dependence of the hadronic parameters of charmonium in the vector channel, i.e. the $J$ / $psi$ resonance mass, coupling (leptonic decay constant), total width, and continuum thr
Using the QCD sum rules we test if the charmonium-like structure Y(4260), observed in the $J/psipipi$ invariant mass spectrum, can be described with a $J/psi f_0(980)$ molecular current with $J^{PC}=1^{--}$. We consider the contributions of condensat