ﻻ يوجد ملخص باللغة العربية
We investigate the phenomenological impact of different sources of lepton flavour violation arising from realistic models based on supergravity mediated supersymmetry breaking with Yukawa operators. We discuss four distinct sources of lepton flavour violation in such models: minimum flavour violation, arising from neutrino masses and the see-saw mechanism with RG running; supergravity flavour violation due to the non-universal structure of the supergravity model; flavour violation due to Froggatt-Nielsen (FN) fields appearing in Yukawa operators developing supersymmetry breaking F-terms and contributing in a non-universal way to soft trilinear terms; and finally heavy Higgs flavour violation arising from the heavy Higgs fields used to break the unified gauge symmetry which also appear in Yukawa operators and behave analagously to the FN fields. In order to quantify the relative effects, we study a particular type I string inspired model based on a supersymmetric Pati-Salam model arising from intersecting D-branes, supplemented by a U(1) family symmetry
The see-saw mechanism to generate small neutrino masses is reviewed. After summarizing our current knowledge about the low energy neutrino mass matrix we consider reconstructing the see-saw mechanism. Low energy neutrino physics is not sufficient to
In the extension of the standard model with one right-handed neutrino and one Higgs triplet, we propose a suppression mechanism, obtaining small masses for the active neutrinos, while mixing angles are predicted with a right-handed neutrino at the Te
The LFV charged lepton decays mu to e + gamma, tau to e + gamma and tau to mu + gamma and thermal leptogenesis are analysed in the MSSM with see-saw mechanism of neutrino mass generation and soft SUSY breaking with universal boundary conditions. The
The arbitrariness of Yukawa couplings can be reduced by the imposition of some flavor symmetries and/or by the realization of texture zeros. We review neutrino Yukawa textures with zeros within the framework of the type-I seesaw with three heavy righ
We consider a two-Higgs-doublet extension of the Standard Model, with three right-handed neutrino singlets and the seesaw mechanism, wherein all the Yukawa-coupling matrices are lepton flavour-diagonal and lepton flavour violation is soft, originatin