ﻻ يوجد ملخص باللغة العربية
The decay amplitudes for anti-B0 -> Ds+ Ds- and anti-Bs0 -> D+ D- have no factorizable contributions. We suggest that dominant contributions to the decay amplitudes arise from two chiral loop contributions and one soft gluon emission contribution. Then we determine branching ratios BR(anti-B0 -> Ds+ Ds-) ~ 7E-5 and BR(anti-Bs0 -> D+ D-) ~ 1E-3.
The e+e- annihilation data recorded with the BABAR detector has been used to study B^0 decays to Ds^(*)+ and D^*-$ mesons. The production fraction of inclusive Ds^(*)+ and the corresponding momentum spectra have been determined. Exclusive decays B^0
While the factorization assumption works well for many two-body nonleptonic $B$ meson decay modes, the recent measurement of $bar Bto D^{(*)0}M^0$ with $M=pi$, $rho$ and $omega$ shows large deviation from this assumption. We analyze the $Bto D^{(*)}M
The decays Bs0 --> Ds(*)+ Ds(*)- are reconstructed in a data sample corresponding to an integrated luminosity of 6.8 fb-1 collected by the CDF II detector at the Tevatron pbar{p} collider. All decay modes are observed with a significance of more than
Flavor oscillations of neutral $B$ mesons have been studied in $e^+e^-$ annihilation data collected with the BABAR detector at center-of-mass energies near the $Upsilon(4S)$ resonance. The data sample used for this purpose consists of events in which
A search for CP violation in D+ -> phi pi+ decays is performed using data collected in 2011 by the LHCb experiment corresponding to an integrated luminosity of 1.0 fb^{-1} at a centre of mass energy of 7 TeV. The CP-violating asymmetry is measured to