ﻻ يوجد ملخص باللغة العربية
Many models that include small extra space dimensions predict graviton states which are well separated in mass, and which can be detected as resonances in collider experiments. It has been shown that the ATLAS detector at the Large Hadron Collider can identify such narrow states up to a mass of 2080 GeV in the decay mode G->ee, using a conservative model. This work extends the study of the ee channel over the full accessible parameter space, and shows that the reach could extend as high as 3.5 TeV. It then discusses ways in which the expected universal coupling of the resonance can be confirmed using other decay modes. In particular, the mode G-> di-photons is shown to be measurable with good precision, which would provide powerful confirmation of the graviton hypothesis. The decays G-> mu mu, WW, ZZ and jet--jet are measurable over a more limited range of couplings and masses. Using information from mass and cross-section measurements, the underlying parameters can be extracted. In one test model, the size of the extra dimension can be determined to a precision in length of 7x10^-33 m.
Theories with extra dimensions of inverse TeV size (or larger) predict a multitude of signals which can be searched for at present and future colliders. In this paper, we review the different phenomenological signatures of a particular class of model
We investigate new physics scenarios where systems comprised of a single top quark accompanied by missing transverse energy, dubbed monotops, can be produced at the LHC. Following a simplified model approach, we describe all possible monotop producti
We study the capability of the international linear collider (ILC) to probe extra dimensions via the seesaw mechanism. In the scenario we study, heavy Kaluza-Klein neutrinos generate tiny neutrino masses and, at the same time, have sizable couplings
Recently, a scenario has been proposed in which the gravitational scale could be as low as the TeV scale, and extra dimensions could be large and detectable at the electroweak scale. Although supersymmetry is not a requirement of this scenario, it is
We investigate the prospects for the discovery of massive color-octet vector bosons at the CERN Large Hadron Collider with $sqrt{s} = 14$ TeV. A phenomenological Lagrangian is adopted to evaluate the cross section of a pair of colored vector bosons (