ﻻ يوجد ملخص باللغة العربية
EXO is a search for neutrinoless double beta decay in 136Xe. An active R&D program for a 10 ton, enriched 136Xe liquid phase detector is now underway. Current research projects are: decay product extraction, Xe purity studies, energy resolution studies, and Ba+ ion laser-tagging. By extracting and laser-tagging the Xe decay product (136Ba) and optimizing the energy resolution in liquid Xe, half lives of up to 5.0x10^28yr will be ultimately probed, corresponding to a sensitivity to Majorana n masses > ~10meV.
Xenon time projection chambers (TPCs) have become a well-established detection technology for neutrinoless double beta decay searches in $^{136}$Xe. I discuss the motivations for this choice. I describe the status and prospects of both liquid and gaseous xenon TPC projects for double beta decay.
A search for neutrinoless double-beta decay ($0 ubetabeta$) in $^{136}$Xe is performed with the full EXO-200 dataset using a deep neural network to discriminate between $0 ubetabeta$ and background events. Relative to previous analyses, the signal de
Results from a search for neutrinoless double-beta decay $0 ubetabeta$ of $^{136}$Xe are presented using the first year of data taken with the upgraded EXO-200 detector. Relative to previous searches by EXO-200, the energy resolution of the detector
Searches for double beta decay of $^{134}$Xe were performed with EXO-200, a single-phase liquid xenon detector designed to search for neutrinoless double beta decay of $^{136}$Xe. Using an exposure of $29.6text{ kg}!cdot!text{yr}$, the lower limits o
We report on a search for neutrinoless double-beta decay of $^{136}$Xe with EXO-200. No signal is observed for an exposure of 32.5 kg-yr, with a background of ~1.5 x 10^{-3} /(kg yr keV) in the $pm 1sigma$ region of interest. This sets a lower limit