ﻻ يوجد ملخص باللغة العربية
The project, aimed at the theoretical support of experiments at modern and future accelerators -- TEVATRON, LHC, electron Linear Colliders (TESLA, NLC, CLIC) and muon factories, is presented. Within this project a four-level computer system is being created, which must automatically calculate, at the one-loop precision level the pseudo- and realistic observables (decay rates and event distributions) for more and more complicated processes of elementary particle interaction, using the principle of knowledge storing. It was already used for a recalculation of the EW radiative corrections for Atomic Parity Violation [1] and complete one-loop corrections for the process $e^+ e^-to tbar{t}$ [2-4]; for the latter an, agreement up to 11 digits with FeynArts and the other results is found. The version of {tt SANC} that we describe here is capable of automatically computing the decay rates and the distributions for the decays $Z(H,W)to fbar{f}$ in the one-loop approximation.
In this paper we describe the present status and our plans for the realization of next phases of the CalcPHEP project aimed at the theoretical support of experiments at modern and future accelerators: TEVATRON, LHC, electron Linear Colliders (LCs) i.
The work presented here attempts at answering the question: how do we decide when a given adetection is a planet or just residual noise in exoplanet direct imaging data? To this end we present a method implemented within a Bayesian framework: (1) to
The TT-PET collaboration is developing a small animal TOF-PET scanner based on monolithic silicon pixel sensors in SiGe BiCMOS technology. The demonstrator chip, a small-scale version of the final detector ASIC, consists of a 3 x 10 pixel matrix inte
We present an analysis of 12 optically selected dual AGN candidates at $z < 0.34$. Each candidate was originally identified via double-peaked [O III] $lambda$5007 emission lines, and have received follow-up $Chandra$ and $HST$ observations. Because t
The tt* equation that we will study here is classed as case 4a by Guest et al. in their series of papers Isomomodromy aspects of the tt* equations of Cecotti and Vafa. In their comprehensive works, Guest et al. give a lot of beautiful formulas on and