ترغب بنشر مسار تعليمي؟ اضغط هنا

Relations between Electromagnetic Form Factors of Baryons

92   0   0.0 ( 0 )
 نشر من قبل A. J. Buchmann
 تاريخ النشر 2002
  مجال البحث
والبحث باللغة English
 تأليف A.J. Buchmann




اسأل ChatGPT حول البحث

The inclusion of two-body exchange currents in the constituent quark model leads to new relations between the electromagnetic properties of octet and decuplet baryons. In particular, the N->Delta quadrupole transition form factor can be expressed in terms of the neutron charge form factor.



قيم البحث

اقرأ أيضاً

The covariant Faddeev approach which describes baryons as relativistic three-quark bound states and is based on the Dyson-Schwinger and Bethe-Salpeter equations of QCD is briefly reviewed. All elements, including especially the baryons three-body-wav e-functions, the quark propagators and the dressed quark-photon vertex, are calculated from a well-established approximation for the quark-gluon interaction. Selected previous results of this approach for the spectrum and elastic electromagnetic form factors of ground-state baryons and resonances are reported. The main focus of this talk is a presentation and discussion of results from a recent investigation of the electromagnetic transition form factors between ground-state octet and decuplet baryons as well as the octet-only $Sigma^0$ to $Lambda$ transition.
We present results from a calculation of the electromagnetic transition form factors between ground-state octet and decuplet baryons as well as the octet-only $Sigma^0$ to $Lambda$ transition. We work in the combined framework of Dyson-Schwinger equa tions and covariant Bethe-Salpeter equations with all elements, the baryon three body wave function, the quark propagators and the dressed quark-photon vertex determined from a well-established, momentum dependent approximation for the quark-gluon interaction. We discuss in particular the similarities among the different transitions as well as the differences induced by SU(3)-isospin symmetry breaking. We furthermore provide estimates for the slopes of the electric and magnetic $Sigma^0$ to $Lambda$ transitions at the zero photon momentum point.
The electromagnetic structure of the pseudoscalar meson nonet is completely described by the sophisticated Unitary&Analytic model, respecting all known theoretical properties of the corresponding form factors.
We have systematically investigated the magnetic moments and magnetic form factors of the decuplet baryons to the next-to-next-leading order in the framework of the heavy baryon chiral perturbation theory. Our calculation includes the contributions f rom both the intermediate decuplet and octet baryon states in the loops. We also calculate the charge and magnetic dipole form factors of the decuplet baryons. Our results may be useful to the chiral extrapolation of the lattice simulations of the decuplet electromagnetic properties.
The nucleon electromagnetic form factors are calculated in light cone QCD sum rules framework using the most general form of the nucleon interpolating current. Using two forms of the distribution amplitudes (DAs), predictions for the form factors are presented and compared with existing experimental data. It is shown that our results describe remarkably well the existing experimental data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا