ﻻ يوجد ملخص باللغة العربية
Recently CLEO has studied the radiative decay of $Upsilon$ into $eta$ and an upper limit for the decay has been determined. Confronting with this upper limit,most of theoretical predictions for the decay fails. After briefly reviewing these predictions we re-examine the decay by separating nonperturbative effect related to the quarkonium and that related to $eta$ or $eta$, in which the later is parameterized by distribution amplitudes of gluons in $eta$. With this factorization approach we obtain theoretical predictions which are in agreement with experiment. Uncertainties in our predictions are discussed. The possibly largest uncertainties are from relativistic corrections for $J/Psi$ and the value of the charm quark mass. We argue that the effect of these uncertainties can be reduced by using quarkonium masses instead of using quark masses. An example of the reduction is shown with an attempt to explain the violation of the famous 14% rule in radiative decays of charmonia.
In this work, we calculate the branching ratios for the $eta(eta)rightarrowbar{ell}ell$ decays, where $ell = e,mu$. These processes have tiny rates in the standard model due to spin flip, loop, and electromagnetic suppression, for what they could be
Motivated by recent measurements of the radiative decay rates of the emph{P}-wave spin singlet charmonium $h_c$ to the light meson $eta$ or $eta^prime$ by the BESIII Collaboration, we investigate the decay rates of these channels at order $alpha alph
We present our model-independent and data-driven method to describe pseudoscalar meson transition form factors in the space- and (low-energy) time-like regions. The method is general and conforms a toolkit applicable to any other form factor, of one
The hadronic decays eta, eta-prime -> 3 pi and eta-prime -> eta pi pi are investigated within the framework of U(3) chiral effective field theory in combination with a relativistic coupled-channels approach. Final state interactions are included by d
A value for the $eta$-$eta^prime$ mixing angle is extracted from the data on $VPgamma$ transitions using simple quark-model ideas. The set of data covers {it all} possible radiative transitions between the pseudoscalar and vector meson nonets. Two ma