ترغب بنشر مسار تعليمي؟ اضغط هنا

A QCD-Analysis for Radiative Decays of $Upsilon$ into $f_2(1270)$

81   0   0.0 ( 0 )
 نشر من قبل Ma Jian-ping
 تاريخ النشر 2001
  مجال البحث
والبحث باللغة English
 تأليف J.P. Ma




اسأل ChatGPT حول البحث

We perform a QCD analysis for the radiative decay of a heavy $^3S_1$ quarkonium into the tensor meson $f_2(1270)$. We make an attempt to separate the nonperturbative effect related to the quarkonium and that related to the tensor meson, the former is represented by NRQCD matrix elements, while the later is parameterized by distribution amplitudes of gluons in the tensor meson at twist-2 level and at twist-3 level. We find that at twist-2 level the helicity $lambda$ of the tensor meson can be 0 and 2 and the amplitude with $lambda =2$ is suppressed. At twist-3 level the tensor meson can have $lambda =1$. A comparison with experiment is made, an agreement of our results with experiment can be found. We also briefly discuss the radiative decay into $eta$ and obtain a prediction for $Upsilontogamma+eta$.



قيم البحث

اقرأ أيضاً

171 - Bing An Li 2009
Decay $Upsilon(1s)togamma f_2(1270)$ is studied by an approach in which the tensor meson, $f_2(1270)$, is strongly coupled to gluons. Besides the strong suppression of the amplitude $Upsilon(1s)togamma gg, ggto f_2$ by the mass of b-quark, d-wave dom inance in $Upsilon(1s)togamma f_2(1270)$ is revealed from this approach, which provides a large enhancement. The combination of these two factors leads to larger $B(Upsilon(1s)togamma f_2(1270))$. The decay rate of $Upsilon(1s)togamma f_2(1270)$ and the ratios of the helicity amplitudes are obtained and they are in agreement with data.
263 - Lianrong Dai , Eulogio Oset 2013
Based on previous studies that support the vector-vector molecular structure of the $f_2(1270)$, $f_2(1525)$, $bar{K}^{*,0}_2(1430)$, $f_0(1370)$ and $f_0(1710)$ resonances, we make predictions for $psi (2S)$ decay into $omega(phi) f_2(1270)$, $omega (phi) f_2(1525)$, $K^{*0}(892) bar{K}^{*,0}_2(1430)$ and radiative decay of $Upsilon (1S),Upsilon (2S), psi (2S)$ into $gamma f_2(1270)$, $gamma f_2(1525)$, $gamma f_0(1370)$, $gamma f_0(1710)$. Agreement with experimental data is found for three available ratios, without using free parameters, and predictions are done for other cases.
We search for bottomonium states in Upsilon(2S)-> (bb-bar) gamma decays with an integrated luminosity of 24.7fb^-1 recorded at the Upsilon(2S) resonance with the Belle detector at KEK, containing (157.8+-3.6) X 10^6 Upsilon(2S) events. The (bb-bar) s ystem is reconstructed in 26 exclusive hadronic final states composed of charged pions, kaons, protons, and K^0_S mesons. We find no evidence for the state recently observed around 9975 MeV (X_(bb-bar)) in an analysis based on a data sample of 9.3 X 10^6 Upsilon(2S) events collected with the CLEO III detector. We set a 90 % confidence-level upper limit on the branching fraction B[Upsilon(2S)-> X_(bb-bar) gamma] X sum_i{B[X_(bb-bar)-> h_i]}< 4.9 X 10^-6, summed over the exclusive hadronic final states employed in our analysis. This result is an order of magnitude smaller than the measurement reported with CLEO data. We also set an upper limit for the eta_b(1S) state of B[Upsilon(2S)-> eta_b(1S) gamma] X sum_i{B[eta_b(1S)-> h_i]}< 3.7 X 10^-6.
110 - V. Uvarov 2000
DELPHI results are presented on the inclusive production of the neutral mesons rho^0, f_0(980), f_2(1270), K^*0_2(1430) and f_2(1525) in hadronic Z^0 decays. They are based on about 2 million multihadronic events collected in 1994 and 1995, using the particle identification capabilities of the DELPHI Ring Imaging Cherenkov detectors and measured ionization losses in the Time Projection Chamber. The total production rates per hadronic Z^0 decay have been determined to be: 1.19 +/- 0.10 for rho^0; 0.164 +/- 0.021 for f_0(980); 0.214 +/- 0.038 for f_2(1270); 0.073 +/- 0.023 for K^*0_2(1430); and 0.012 +/- 0.006 for f_2(1525). The total production rates for all mesons and differential cross-sections for the rho^0, f_0(980) and f_2(1270) are compared with the results of other LEP experiments and with models.
Using samples of 102 million $Upsilon(1S)$ and 158 million $Upsilon(2S)$ events collected with the Belle detector, we study exclusive hadronic decays of these two bottomonium resonances to the three-body final states $phi K^+ K^-$, $omega pi^+ pi^-$ and $K^{ast 0}(892) K^- pi^+ $, and to the two-body Vector-Tensor ($phi f_2(1525)$, $omega f_2(1270)$, $rho a_2(1320)$ and $K^{ast 0}(892) bar{K}_2^{ast 0}(1430) $) and Axial-vector-Pseudoscalar ($K_1(1270)^+ K^-$, $K_1(1400)^+ K^- $ and $b_1(1235)^+ pi^- $) pairs. Signals are observed for the first time in the $Upsilon(1S) to phi K^+ K^-$, $omega pi^+ pi^-$, $K^{ast 0} K^- pi^+$, $K^{ast0} K_2^{ast 0}$ and $Upsilon(2S) to phi K^+ K^-$, $K^{ast 0} K^- pi^+$ decay modes. Branching fractions are determined for all the processes, while 90% confidence level upper limits are established on the branching fractions for the modes with a statistical significance less than $3sigma$. The ratios of the branching fractions of $Upsilon(2S)$ and $Upsilon(1S)$ decays into the same final state are used to test a perturbative QCD prediction for OZI suppressed bottomonium decays.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا