ﻻ يوجد ملخص باللغة العربية
We examine the constraints on the MNS lepton mixing matrix =66rom the present and future experimental data of the neutrino oscillation, tritium beta decay, and neutrinoless double beta decay for Majorana neutrinos. We show that the small mixing angle solutions for solar neutrino problem are disfavored for small averaged mass ($<m_ u>$) of neutrinoless double beta decay ($leq 0.01$ eV) in the inverse neutrino mass hierarchy scenario. This is the case even in the normal mass hierarchy scenario except for very restrictive value of the averaged neutrino mass ($bar{m_ u}$) of single beta decay. The lower mass bound for $bar{m_ u}$ is given from the present neutrino oscillation data. We obtain some relations between $<m_ u>$ and $bar{m_ u}$. The constraints on the Majorana CP violating phases are also given.
Neutrino Self-Interactions ($ u$SI) beyond the Standard Model are an attractive possibility to soften cosmological constraints on neutrino properties and also to explain the tension in late and early time measurements of the Hubble expansion rate. Th
The observation of neutrinoless double beta decay will have important consequences. First it will signal that lepton number is not conserved and the neutrinos are Majorana particles. Second, it represents our best hope for determining the absolute ne
Recent neutrino experiment results show a preference for the normal neutrino mass ordering. The global efforts to search for neutrinoless double beta decays undergo a broad gap with the approach to the prediction in the three-neutrino framework based
We examine the prospects of detecting an analogous process of neutrinoless double beta decay at a neutrino factory from a high energy muon storage ring. Limits from LEP experiments, neutrinoless double beta decay as well as from global fits have to b
We discuss a mechanism of neutrinoless double beta decay, where neutrinos of different flavours come into play. This is realized by effective flavour-violating scalar interactions. As one consequence, we find that within the normal mass ordering the