ﻻ يوجد ملخص باللغة العربية
CP violation, fermion masses and mixing angles including that of neutrinos are studied in an SUSY SO(10)$times Delta (48)times$ U(1) model. The nonabelian SU(3) discrete family symmetry $Delta(48)$ associated with a simple scheme of U(1) charge assignment on various fields concerned in superpotential leads to unique Yukawa coupling matrices with zero textures. Thirteen parameters involving masses and mixing angles in the quark and charged lepton sector are successfully predicted by only four parameters. The masses and mixing angles for the neutrino sector could also be predicted by constructing an appropriate heavy Majorana neutrino mass matrix without involving new parameters. It is found that the atmospheric neutrino deficit, the mass limit put by hot dark matter and the LSND $bar{ u}_{mu} to bar{ u}_{e}$ events may simultaneously be explained, but solar neutrino puzzle can be solved only by introducing a sterile neutrino. An additional parameter is added to obtain the mass and mixing of the sterile neutrino. The hadronic parameters $B_{K}$ and $f_{B}sqrt{B}$ are extracted from the observed $K^{0}$-$bar{K}^{0}$ and $B^{0}$-$bar{B}^{0}$ mixings respectively. The direct CP violation ($epsilon/epsilon$) in kaon decays and the three angles $alpha$, $beta$ and $gamma$ of the unitarity triangle in the CKM matrix are also presented. More precise measurements of $alpha_{s}(M_{Z})$, $|V_{cb}|$, $|V_{ub}/V_{cb}|$, $m_{t}$, as well as various CP violation and neutrino oscillation experiments will provide an important test for the present model and guide us to a more fundamental theory.
We study a supersymmetric extension of the Standard Model based on discrete A4xZ3xZ4 flavor symmetry. We obtain quark mixing angles as well as a realistic fermion mass spectrum and we predict tribimaximal leptonic mixing by a spontaneous breaking of
For all the success of the Standard Model (SM), it is on the verge of being surpassed. In this regard we argue, by showing a minimal flavor-structured model based on the non-Abelian discrete $SL_2(F_3)$ symmetry, that $U(1)$ mixed-gravitational anoma
We analyse the structure of Yukawa couplings in local SU(5) F-theory models with $E_7$ enhancement. These models are the minimal setting in which the whole flavour structure for the MSSM charged fermions is encoded in a small region of the entire com
The neutrino parameters determined from the solar neutrino data and the anti-neutrino parameters determined from KamLAND reactor experiment are in good agreement with each other. However, the best fit points of the two sets differ from each other by
We perform a global analysis of neutrino oscillation data, including high-precision measurements of the neutrino mixing angle theta_13 at reactor experiments, which have confirmed previous indications in favor of theta_13>0. Recent data presented at