ﻻ يوجد ملخص باللغة العربية
Three possibilities for the origin of CP violation are discussed: (1) the Standard Model in which all CP violation is due to one parameter in the CKM matrix, (2) the superweak model in which all CP violation is due to new physics and (3) the Standard Model plus new physics. A major goal of B physics is to distinguish these possibilities. CP violation implies time reversal violation (TRV) but direct evidence for TRV is difficult to obtain.
Solutions of the Strong CP Problem based on the spontaneous breaking of CP must feature a non-generic structure and simultaneously explain a coincidence between a priori unrelated CP-even and CP-odd mass scales. We show that these properties can emer
We derive sufficient conditions that guarantee a robust solution of the strong CP problem in theories with spontaneous CP violation, and introduce a class of models satisfying these requirements. In the simplest scenarios the dominant contribution to
Precision tests of the Kobayashi-Maskawa model of CP violation are discussed, pointing out possible signatures for other sources of CP violation and for new flavor-changing operators. The current status of the most accurate tests is summarized.
The prospects of measuring the leptonic angles and CP-odd phases at a neutrino factory are discussed in two scenarios: 1) three active neutrinos as indicated by the present ensemble of atmospheric plus solar data; 2) three active plus one sterile neu
After listing basic properties of the Standard Model (SM) that play the crucial role in the field of flavour and CP violation, we discuss the following topics: 1) CKM matrix and the unitarity triangle. 2) Theoretical framework in a non-technical mann