ﻻ يوجد ملخص باللغة العربية
It has been suggested recently that an arbitrary induced theta-vacuum state could be created in heavy ion collisions. If such a state can be created, it would decay by various mechanisms to the fundamental theta=0 state which is the true ground state of our world. In the following we will discuss the possibility of studying this unusual state through the emission of pions, eta-mesons, and eta-mesons. We will also present the spectrum of the produced particles in this non-zero theta background. We use the instantaneous perturbation theory for our estimates.
We study the spin polarization generated by the hydrodynamic gradients. In addition to the widely studied thermal vorticity effects, we identify an undiscovered contribution from the fluid shear. This shear-induced polarization (SIP) can be viewed as
The development of the early Universe is a remarkable laboratory for the study of most nontrivial properties of particle physics. What is more remarkable is the fact that these phenomena at the QCD scale can be, in principle, experimentally tested in
We argue that contemporary jet substructure techniques might facilitate a more direct measurement of hard medium-induced gluon bremsstrahlung in heavy-ion collisions, and focus specifically on the soft drop declustering procedure that singles out the
Heavy flavor supplies a chance to constrain and improve the hadronization mechanism. We have established a sequential coalescence model with charm conservation and applied it to the charmed hadron production in heavy ion collisions. The charm conserv
A study of the horn in the particle ratio $K^+/pi^+$ for central heavy-ion collisions as a function of the collision energy $sqrt{s}$ is presented. We analyse two different interpretations: the onset of deconfinement and the transition from a baryon-