ﻻ يوجد ملخص باللغة العربية
$J/Psi$ particles are abundantly produced at the Beijing Electron Positron Collider (BEPC). The $J/Psi$ decays provide an excellent place for studying $N^*$ resonances. For $J/Psitobar NNpi$ and $bar NNpipi$, the $pi N$ and $pipi N$ systems are limited to be pure isospin 1/2 due to isospin conservation. This is a big advantage in studying $N^*$ resonances from $J/Psi$ decays, compared with $pi N$ and $gamma N$ experiments which suffer difficulty on the isospin decomposition of 1/2 and 3/2. All other $N^*$ decay channels which are presently under investigation at CEBAF(JLab, USA), ELSA(Bonn,Germany) and GRAAL(Grenoble, France) with real photon or space-like virtual photon can also be studied at BEPC complementally with the time-like virtual photon. The process $J/Psitobar NN^*$ or $Nbar N^*$ provides a new way to probe the internal structure of the $N^*$ resonances. The recent results and outlook of our new $N^*$ program at BEPC are presented.
If the fundamental mass scale of superstring theory is as low as few TeVs, the massive modes of vibrating strings, Regge excitations, will be copiously produced at the Large Hadron Collider (LHC). We discuss the complementary signals of low mass supe
In this paper we study transverse polarization of $Lambda$ hyperons in single-inclusive leptonic annihilation. We show that when the transverse momentum of the $Lambda$ baryon is measured with respect to the thrust axis, a transverse momentum depende
We study the pair production of scalar top quarks in e+e- collisions with the subsequent decay of the top squarks into b-quarks and charginos. We simulate this process using PYTHIA6.4 for beam energies 2E_beam = 350, 400, 500, 800, 1000 GeV. Proposin
In this work, we find a Critical Energy induced Enhancement (CEE) mechanism for the general three-body open-charm process at the $e^+e^-$ collisions, which utilizes the peculiar kinematic behavior of the $e^+e^-$ annihilation process involving three-
Multiplicity distributions of charged particles produced in the $e^{+}e^{-}$ collisions at LEP2 energies ranging from 91 to 206 GeV in full phase space, are compared with predictions from Tsallis $q$-statistics and the recently proposed Weibull distr