ﻻ يوجد ملخص باللغة العربية
We present non-perturbative results for the spectrum of heavy quarkonia. Using an anisotropic formulation of Lattice QCD we achieved an unprecedented control over statistical and systematic errors. We also study relativistic corrections to the leading order predictions for heavy hybrids and conventional bound states.
We study in detail the spectrum of heavy quarkonia with different orbital angular momentum along with their radial and gluonic excitations. Using an anisotropic formulation of Lattice QCD we achieved an unprecedented control over statistical errors a
Correlations between the QCD coupling alpha_s, the gluon condensate < alpha_s G^2 >, and the c,b-quark running masses m_c,b in the MS-scheme are explicitly studied (for the first time) from the (axial-)vector and (pseudo)scalar charmonium and bottomi
Since gluons in QCD are interacting fundamental constituents just as quarks are, we expect that in addition to mesons made from a quark and an antiquark, there should also be glueballs and hybrids (bound states of quarks, antiquarks and gluons). In g
Results of a high-statistics, multi-volume Lattice QCD exploration of the deuteron, the di-neutron, the H-dibaryon, and the Xi-Xi- system at a pion mass of m ~ 390 MeV are presented. Calculations were performed with an anisotropic n_f = 2+1 Clover di
We sketch the basic ideas of the lattice regularization in Quantum Field Theory, the corresponding Monte Carlo simulations, and applications to Quantum Chromodynamics (QCD). This approach enables the numerical measurement of observables at the non-pe