ﻻ يوجد ملخص باللغة العربية
Event-by-event analysis of heavy-ion collision events is an important tool for the study of the QCD phase boundary and formation of a quark-gluon plasma. A universal feature of phase boundaries is the appearance of increased fluctuations of conserved measures as manifested by excess measure variance compared to a reference. In this paper I consider a particular aspect of EbyE analysis emphasizing global-variables variance comparisons and the central limit theorem. I find that the central limit theorem is, in a broader interpretation, a statement about the scale invariance of total variance for a measure distribution, which in turn relates to the scale-dependent symmetry properties of the distribution.. I further generalize this concept to the relationship between the scale dependence of a covariance matrix for all conserved measures defined on a dynamical system and a matrix of covariance integrals defined on two-point measure spaces, which points the way to a detailed description of the symmetry dynamics of a complex measure system. Finally, I relate this generalized description to several recently proposed or completed event-by-event analyses.
The event-by-event fluctuations of suitably chosen observables in heavy ion collisions at SPS, RHIC and LHC can tell us about the thermodynamic properties of the hadronic system at freeze-out. By studying these fluctuations as a function of varying c
Fluctuations of thermodynamic quantities are fundamental for the study of the QGP phase transition. The ALICE experiment is well suited for precise event-by-event measurements of various quantities. In this article, we review the capabilities of ALIC
A Monte Carlo study of identified particle ratio fluctuations at LHC energies is carried out in the frame work of hij model using the fluctuation variable $ u_{dyn}$. The simulated events for Pb-Pb collisions at $sqrt{s}_{NN}$ = 2.76 and 5.02 TeV and
Within a dynamical quark recombination model we explore various proposed event-by-event observables sensitive to the microscopic structure of the QCD-matter created at RHIC energies. Charge fluctuations, charge transfer fluctuations and baryon-strang
Some of the more powerful results of mathematical statistics are becoming of increasing importance in statistical mechanics. Here the use of the central limit theorem in conjunction with the canonical ensemble is shown to lead to an interesting and i