ﻻ يوجد ملخص باللغة العربية
By restricting the functional integration to the Regge geometries, we give the discretized version of the well known path integral formulation of 2--dimensional quantum gravity in the conformal gauge. We analyze the role played by diffeomorphisms in the Regge framework and we give an exact expression for the Faddeev--Popov determinant related to a Regge surface; such an expression in the smooth limit goes over to the correct continuum result.
We study the fractal structure of space-time of two-dimensional quantum gravity coupled to c=-2 conformal matter by means of computer simulations. We find that the intrinsic Hausdorff dimension d_H = 3.58 +/- 0.04. This result supports the conjecture
We adopt the standard definition of diffeomorphism for Regge gravity in D=2 and give an exact expression of the Liouville action in the discretized case. We also give the exact form of the integration measure for the conformal factor. In D>2 we exten
We consider the path-sum of Ponzano-Regge with additional boundary contributions in the context of the holographic principle of Quantum Gravity. We calculate an holographic projection in which the bulk partition function goes to a semi-classical limi
We analyze conformal gravity in translationally invariant approximation, where the metric is taken to depend on time but not on spatial coordinates. We find that the field mode which in perturbation theory has a ghostlike kinetic term, turns into a t
We investigate SU(3) gauge theories in four dimensions with Nf fundamental fermions, on a lattice using the Wilson fermion. Clarifying the vacuum structure in terms of Polyakov loops in spatial directions and properties of temporal propagators using