ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploring Correlation Methods to Determine QCD beta-Functions on the Lattice

406   0   0.0 ( 0 )
 نشر من قبل Klaus Schilling
 تاريخ النشر 1995
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate -- as an alternative to usual Monte Carlo Renormalization Group methods -- the feasibility of extracting QCD beta-functions directly from a lattice analysis of correlations between the action and Wilson loops. We test this correlation technique numerically in four dimensional SU(2) gauge theory, on a 16^4 lattice at beta = 2.5 and find very promising results.



قيم البحث

اقرأ أيضاً

A systematic analysis of the structure of single-baryon correlation functions calculated with lattice QCD is performed, with a particular focus on characterizing the structure of the noise associated with quantum fluctuations. The signal-to-noise pro blem in these correlation functions is shown, as long suspected, to result from a sign problem. The log-magnitude and complex phase are found to be approximately described by normal and wrapped normal distributions respectively. Properties of circular statistics are used to understand the emergence of a large time noise region where standard energy measurements are unreliable. Power-law tails in the distribution of baryon correlation functions, associated with stable distributions and Levy flights, are found to play a central role in their time evolution. A new method of analyzing correlation functions is considered for which the signal-to-noise ratio of energy measurements is constant, rather than exponentially degrading, with increasing source-sink separation time. This new method includes an additional systematic uncertainty that can be removed by performing an extrapolation, and the signal-to-noise problem re-emerges in the statistics of this extrapolation. It is demonstrated that this new method allows accurate results for the nucleon mass to be extracted from the large-time noise region inaccessible to standard methods. The observations presented here are expected to apply to quantum Monte Carlo calculations more generally. Similar methods to those introduced here may lead to practical improvements in analysis of noisier systems.
The calculation of the spectrum of QCD is key to an understanding of the strong interactions, and vital if we are to capitalize on the experimental study of the spectrum. In this paper, we describe progress towards understanding the spectrum of reson ances of both mesons and baryons from lattice QCD, focusing in particular on the resonances of the $I=1/2$ nucleon states, and of charmonium mesons composed of the heavy charmed quarks.
Single state saturation of the temporal correlation function is a key condition to extract physical observables such as energies and matrix elements of hadrons from lattice QCD simulations. A method commonly employed to check the saturation is to see k for a plateau of the observables for large Euclidean time. Identifying the plateau in the cases having nearby states, however, is non-trivial and one may even be misled by a fake plateau. Such a situation takes place typically for the system with two or more baryons. In this study, we demonstrate explicitly the danger from a possible fake plateau in the temporal correlation functions mainly for two baryons ($XiXi$ and $NN$), and three and four baryons ($^3{rm He}$ and $^4{rm He})$ as well, employing (2+1)-flavor lattice QCD at $m_{pi}=0.51$ GeV on four lattice volumes with $L=$ 2.9, 3.6, 4.3 and 5.8 fm. Caution is given for drawing conclusion on the bound $NN$, $3N$ and $4N$ systems only based on the temporal correlation functions.
In this work we present the first non-perturbative determination of the hadronic susceptibilities that constrain the form factors entering the semileptonic $B to D^{(*)} ell u_ell $ transitions due to unitarity and analyticity. The susceptibilities are obtained by evaluating moments of suitable two-point correlation functions obtained on the lattice. Making use of the gauge ensembles produced by the Extended Twisted Mass Collaboration with $N_f = 2+1+1$ dynamical quarks at three values of the lattice spacing ($a simeq 0.062, 0.082, 0.089$ fm) and with pion masses in the range $simeq 210 - 450$ MeV, we evaluate the longitudinal and transverse susceptibilities of the vector and axial-vector polarization functions at the physical pion point and in the continuum and infinite volume limits. The ETMC ratio method is adopted to reach the physical $b$-quark mass $m_b^{phys}$. At zero momentum transfer for the $b to c$ transition we get $chi_{0^+}(m_b^{phys}) = 7.58,(59) cdot 10^{-3}$, $chi_{1^-}(m_b^{phys}) = 6.72,(41) cdot 10^{-4}$ GeV$^{-2}$, $chi_{0^-}(m_b^{phys}) = 2.58,(17) cdot 10^{-2}$ and $chi_{1^+}(m_b^{phys}) = 4.69,(30) cdot 10^{-4}$ GeV$^{-2}$ for the scalar, vector, pseudoscalar and axial susceptibilities, respectively. In the case of the vector and pseudoscalar channels the one-particle contributions due to $B_c^*$- and $B_c$-mesons are evaluated and subtracted to improve the bounds, obtaining: $chi_{1^-}^{sub}(m_b^{phys}) = 5.84,(44) cdot 10^{-4}$ GeV$^{-2}$ and $chi_{0^-}^{sub}(m_b^{phys}) = 2.19,(19) cdot 10^{-2}$.
123 - Takumi Doi , Sinya Aoki 2011
Three-nucleon forces (3NF) are investigated from two-flavor lattice QCD simulations. We utilize the Nambu-Bethe-Salpeter (NBS) wave function to determine two-nucleon forces (2NF) and 3NF in the same framework. As a first exploratory study, we extract 3NF in which three nucleons are aligned linearly with an equal spacing. This is the simplest geometrical configuration which reduces the huge computational cost of calculating the NBS wave function. Quantum numbers of the three-nucleon system are chosen to be (I, J^P)=(1/2,1/2^+) (the triton channel). Lattice QCD simulations are performed using N_f=2 dynamical clover fermion configurations at the lattice spacing of a = 0.156 fm on a 16^3 x 32 lattice with a large quark mass corresponding to m_pi= 1.13 GeV. We find repulsive 3NF at short distance in the triton channel. Several sources of systematic errors are also discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا