ﻻ يوجد ملخص باللغة العربية
The weak coupling region of CP$^{N-1}$ lattice field theory with the $theta$-term is investigated. Both the usual real theta method and the imaginary theta method are studied. The latter was first proposed by Bhanot and David. Azcoiti et al. proposed an inversion approach based on the imaginary theta method. The role of the inversion approach is investigated in this paper. A wide range of values of $h=-{rm Im} theta$ is studied, where $theta $ denotes the magnitude of the topological term. Step-like behavior in the $x$-$h$ relation (where $x=Q/V$, $Q$ is the topological charge, and $V$ is the two dimensional volume) is found in the weak coupling region. The physical meaning of the position of the step-like behavior is discussed. The inversion approach is applied to weak coupling regions.
A $theta$ term in lattice field theory causes the sign problem in Monte Carlo simulations. This problem can be circumvented by Fourier-transforming the topological charge distribution $P(Q)$. This strategy, however, has a limitation, because errors o
The topological charge distribution P(Q) is calculated for lattice ${rm CP}^{N-1}$ models. In order to suppress lattice cut-off effects we employ a fixed point (FP) action. Through transformation of P(Q) we calculate the free energy $F(theta)$ as a f
We numerically study the phase structure of the CP(1) model in the presence of a topological $theta$-term, a regime afflicted by the sign problem for conventional lattice Monte Carlo simulations. Using a bond-weighted Tensor Renormalization Group met
In Monte Carlo simulations of lattice field theory with a $theta$ term, one confronts the complex weight problem, or the sign problem. This is circumvented by performing the Fourier transform of the topological charge distribution $P(Q)$. This proced
We study the sign problem in lattice field theory with a $theta$ term. We apply the maximum entropy method (MEM) to flattening phenomenon of the free energy density $f(theta)$, which originates from the sign problem. In our previous paper, we applied