ﻻ يوجد ملخص باللغة العربية
Large sets of baryon interpolating field operators are developed for use in lattice QCD studies of baryons with zero momentum. Operators are classified according to the double-valued irreducible representations of the octahedral group. At first, three-quark smeared, local operators are constructed for each isospin and strangeness and they are classified according to their symmetry with respect to exchange of Dirac indices. Nonlocal baryon operators are formulated in a second step as direct products of the spinor structures of smeared, local operators together with gauge-covariant lattice displacements of one or more of the smeared quark fields. Linear combinations of direct products of spinorial and spatial irreducible representations are then formed with appropriate Clebsch-Gordan coefficients of the octahedral group. The construction attempts to maintain maximal overlap with the continuum SU(2) group in order to provide a physically interpretable basis. Nonlocal operators provide direct couplings to states that have nonzero orbital angular momentum.
We express each Clebsch-Gordan (CG) coefficient of a discrete group as a product of a CG coefficient of its subgroup and a factor, which we call an embedding factor. With an appropriate definition, such factors are fixed up to phase ambiguities. Part
We report in this article three- and four-term recursion relations for Clebsch-Gordan coefficients of the quantum algebras $U_q(su_2)$ and $U_q(su_{1,1})$. These relations were obtained by exploiting the complementarity of three quantum algebras in a $q$-deformation of $sp(8, gr)$.
We present the ground and excited state spectra of singly, doubly and triply-charmed baryons by using dynamical lattice QCD. A large set of baryonic operators that respect the symmetries of the lattice and are obtained after subduction from their con
The Clebsch-Gordan coefficients of the group SU(2) are shown to satisfy new inequalities. They are obtained using the properties of Shannon and Tsallis entropies. The inequalities associated with the Wigner 3-j symbols are obtained using the relation
We investigate the $D_{s0}^ast(2317)$ meson using lattice QCD and considering correlation functions of several $bar{c} s$ two-quark and $bar{c} s (bar{u} u + bar{d} d)$ four-quark interpolating fields. These interpolating fields generate different st