ﻻ يوجد ملخص باللغة العربية
We present results for Delta I=3/2 and Delta S=2 matrix elements relevant for CP violation in K->Pi Pi decays and for the K_S-K_L mass difference in the standard model and beyond. They were obtained with Neuberger fermions on quenched gauge configurations generated with the Wilson plaquette action at beta=6.0 on an 18^3x64 lattice.
We present results for the Delta S=2 matrix elements which are required to study neutral kaon mixing in the standard model (SM) and beyond (BSM). We also provide leading chiral order results for the matrix elements of the electroweak penguin operator
The neutral kaon meson mixing plays an important role in test of the Standard Model (SM) and new physics beyond it. Scale invariant unparticle physics induces a flavor changing neutral current (FCNC) transition of $K^0-bar K^0$ oscillation at the tre
Recently the branching ratios for $B^+to K^+bar K^0$ and $B^0 to K^0 bar K^0$ have been measured. Data indicate that the annihilation amplitudes in these decays are not zero. A non-zero annihilation amplitude plays an important role in CP violation f
We calculate BSM hadronic matrix elements for $K^0-bar K^0$ mixing in the Dual QCD approach (DQCD). The ETM, SWME and RBC-UKQCD lattice collaborations find the matrix elements of the BSM density-density operators $mathcal{O}_i$ with $i=2-5$ to be rat
Simulation studies are performed to assess the sensitivity of a model-independent analysis of the flavour-tagged decays $D^0 to K^0_{rm S}pi^+pi^-$ and $D^0 to K^0_{rm S}K^+K^-$ to mixing and CP violation. The analysis takes as input measurements of