ﻻ يوجد ملخص باللغة العربية
We describe an implementation of the Rational Hybrid Monte Carlo (RHMC) algorithm for dynamical computations with two flavours of staggered quarks. We discuss several variants of the method, the performance and possible sources of error for each of them, and we compare the performance and results to the inexact R algorithm.
QCD results are presented for a 2+1 flavour fermion clover action (which we call the SLiNC action). A method of tuning the quark masses to their physical values is discussed. In this method the singlet quark mass is kept fixed, which solves the probl
A numerical calculation of the lattice staggered renormalisation constants at $beta = 5.35$, $m = 0.01$ is presented. It is seen that there are considerable non-perturbative effects present. As an application the vector decay constant $f_rho$ is esti
In order to study the running coupling in four-flavour QCD, we review the set-up of the Schrodinger functional (SF) with staggered quarks. Staggered quarks require lattices which, in the usual counting, have even spatial lattice extent $L/a$ while th
We consider the Rational Hybrid Monte Carlo algorithm for performing exact 2+1 flavour fermion simulations. The specific cases of ASQTAD and domain wall fermions are considered. We find that in both cases the naive performance is similar to conventional hybrid algorithms.
{We present the results of a numerical investigation of SU(2) gauge theory with $N_f=3/2$ flavours of fermions, corresponding to 3 Majorana fermions, which transform in the adjoint representation of the gauge group. At two values of the gauge couplin