ﻻ يوجد ملخص باللغة العربية
We argue that high-precision lattice QCD is now possible, for the first time, because of a new improved staggered quark discretization. We compare a wide variety of nonperturbative calculations in QCD with experiment, and find agreement to within statistical and systematic errors of 3% or less. We also present a new determination of alpha_msbar(Mz); we obtain 0.121(3). We discuss the implications of this breakthrough for phenomenology and, in particular, for heavy-quark physics.
Scale setting is of central importance in lattice QCD. It is required to predict dimensional quantities in physical units. Moreover, it determines the relative lattice spacings of computations performed at different values of the bare coupling, and t
We present a new determination of the $B_s$ leptonic decay constant from lattice QCD simulations that use gluon configurations from MILC and a highly improved discretization of the relativistic quark action for both valence quarks. Our result, $f_{B_
We use lattice QCD simulations, with MILC gluon configurations and HISQ c-quark propagators, to make very precise determinations of moments of charm-quark pseudoscalar, vector and axial-vector correlators. These moments are combined with new four-loo
We determine $D$ and $D_s$ decay constants from lattice QCD with 2% errors, 4 times better than experiment and previous theory: $f_{D_s}$ = 241(3) MeV, $f_D$ = 207(4) MeV and $f_{D_s}/f_D$ = 1.164(11). We also obtain $f_K/f_{pi}$ = 1.189(7) and $(f
We present a new lattice QCD analysis of heavy-quark pseudoscalar-pseudoscalar correlators, using gluon configurations from the MILC collaboration that include vacuum polarization from $u$, $d$, $s$ and $c$~quarks($n_f=4$). We extract new values for