ﻻ يوجد ملخص باللغة العربية
We analyze the cut-off dependence of mesonic spectral functions calculated at finite temperature on Euclidean lattices with finite temporal extent. In the infinite temperature limit we present analytic results for lattice spectral functions calculated with standard Wilson fermions as well as a truncated perfect action. We explicitly determine the influence of `Wilson doublers on the high momentum structure of the mesonic spectral functions and show that this cut-off effect is strongly suppressed when using an improved fermion action.
First principle calculation of the QCD spectral functions (SPFs) based on the lattice QCD simulations is reviewed. Special emphasis is placed on the Bayesian inference theory and the Maximum Entropy Method (MEM), which is a useful tool to extract SPF
It is shown that the Greens function on a finite lattice in arbitrary space dimension can be obtained from that of an infinite lattice by means of translation operator. Explicit examples are given for one- and two-dimensional lattices.
We present results for the mass of the eta-prime meson in the continuum limit for two-flavor lattice QCD, calculated on the CP-PACS computer, using a renormalization-group improved gauge action, and Sheikholeslami and Wohlerts fermion action with tad
By exploiting the similarity between Blochs theorem for electrons in crystalline solids and the problem of Landau gauge-fixing in Yang-Mills theory on a replicated lattice, one is able to obtain essentially infinite-volume results from numerical simu
We propose a method to non-perturbatively calculate the forward-scattering matrix elements relevant to inclusive semi-leptonic B meson decays. Corresponding hadronic structure functions at unphysical kinematics are accessible through lattice QCD calc