ﻻ يوجد ملخص باللغة العربية
The massive Schwinger model is studied, using a density matrix renormalisation group approach to the staggered lattice Hamiltonian version of the model. Lattice sizes up to 256 sites are calculated, and the estimates in the continuum limit are almost two orders of magnitude more accurate than previous calculations. Colemans picture of `half-asymptotic particles at background field theta = pi is confirmed. The predicted phase transition at finite fermion mass (m/g) is accurately located, and demonstrated to belong in the 2D Ising universality class.
The massive Schwinger model is studied, using a density matrix renormalization group approach to the staggered lattice Hamiltonian version of the model. Lattice sizes up to 256 sites are calculated, and the estimates in the continuum limit are almost
We review Whites density matrix renormalisation group method, an increasingly popular method for the solution of low dimensional quantum Hamiltonians. We describe some applications to frustrated spin systems, quantum critical phenomena, two dimension
Using a recently introduced tensor network method, we study the density of states of the lattice Schwinger model, a standard testbench for lattice gauge theory numerical techniques, but also the object of recent experimental quantum simulations. We i
The numerical study of anyonic systems is known to be highly challenging due to their non-bosonic, non-fermionic particle exchange statistics, and with the exception of certain models for which analytical solutions exist, very little is known about t
We employ exact diagonalization with strong coupling expansion to the massless and massive Schwinger model. New results are presented for the ground state energy and scalar mass gap in the massless model, which improve the precision to nearly $10^{-9