ترغب بنشر مسار تعليمي؟ اضغط هنا

Static three- and four-quark potentials

60   0   0.0 ( 0 )
 نشر من قبل Constantia Alexandrou
 تاريخ النشر 2001
  مجال البحث
والبحث باللغة English
 تأليف C. Alexandrou




اسأل ChatGPT حول البحث

We present results for the static three- and four-quark potentials in SU(3) and SU(4) respectively. Using a variational approach, combined with multi-hit for the time-like links, we determine the ground state of the baryonic string with sufficient accuracy to test the $Y-$ and $Delta-$ ansatze for the baryonic Wilson area law. Our results favor the $Delta$ ansatz, where the potential is the sum of two-body terms.



قيم البحث

اقرأ أيضاً

69 - Oleg Andreev 2021
Making use of the gauge/string duality, it is possible to study some aspects of the string breaking phenomenon in the three quark system. Our results point out that the string breaking distance is not universal and depends on quark geometry. The esti mates of the ratio of the string breaking distance in the three quark system to that in the quark-antiquark system would range approximately from $frac{2}{3}$ to $1$. In addition, it is shown that there are special geometries which allow more than one breaking distance.
We evaluate the static $qqbar{q}bar{q}$ and $qqqqbar{q}$ potentials in the quenched theory at $beta=5.8$ and $beta=6.0$ on a lattice of size $16^3times 32$. We compare the static potentials to the sum of two meson potentials for the tetraquark system and to the sum of the baryonic and mesonic potentials for the pentaquark state, as well as, with the confining potential obtained in the strong coupling expansion.
Three-quark potentials are studied in great details in the three-dimensional $SU(3)$ pure gauge theory at finite temperature, for the cases of static sources in the fundamental and adjoint representations. For this purpose, the corresponding Polyakov loop model in its simplest version is adopted. The potentials in question, as well as the conventional quark--anti-quark potentials, are calculated numerically both in the confinement and deconfinement phases. Results are compared to available analytical predictions at strong coupling and in the limit of large number of colors $N$. The three-quark potential is tested against the expected $Delta$ and $Y$ laws and the $3q$ string tension entering these laws is compared to the conventional $qbar{q}$ string tension. As a byproduct of this investigation, essential features of the critical behaviour across the deconfinement transition are elucidated.
We study $I=0$ quarkonium resonances decaying into pairs of heavy-light mesons using static-static-light-light potentials from lattice QCD. To this end, we solve a coupled channel Schrodinger equation with a confined quarkonium channel and channels w ith a heavy-light meson pair to compute phase shifts and $mbox{T}$ matrix poles for the lightest decay channel. We discuss our results for $S$, $P$, $D$ and $F$ wave states in the context of corresponding experimental results, in particular for $Upsilon(10753)$ and $Upsilon(10860)$.
We discuss the two- and three-point correlators in the two-dimensional three-state Potts model in the high-temperature phase of the model. By using the form factor approach and perturbed conformal field theory methods we are able to describe both the large distance and the short distance behaviours of the correlators. We compare our predictions with a set of high precision Monte-Carlo simulations (performed on the triangular lattice realization of the model) finding a complete agreement in both regimes. In particular we use the two-point correlators to fix the various non-universal constants involved in the comparison (whose determination is one of the results of our analysis) and then use these constants to compare numerical results and theoretical predictions for the three-point correlator with no free parameter. Our results can be used to shed some light on the behaviour of the three-quark correlator in the confining phase of the (2+1)-dimensional SU(3) lattice gauge theory which is related by dimensional reduction to the three-spin correlator in the high-temperature phase of the three-state Potts model. The picture which emerges is that of a smooth crossover between a Delta type law at short distances and a Y type law at large distances.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا