ﻻ يوجد ملخص باللغة العربية
Many non-Hermitian but PT-symmetric theories are known to have a real positive spectrum. Since the action is complex for there theories, Monte Carlo methods do not apply. In this paper the first field-theoretic method for numerical simulations of PT-symmetric Hamiltonians is presented. The method is the complex Langevin equation, which has been used previously to study complex Hamiltonians in statistical physics and in Minkowski space. We compute the equal-time one-point and two-point Greens functions in zero and one dimension, where comparisons to known results can be made. The method should also be applicable in four-dimensional space-time. Our approach may also give insight into how to formulate a probabilistic interpretation of PT-symmetric theories.
The Source Galerkin Method is a new numerical technique that is being developed to solve Quantum Field Theories on the continuum. It is not based on Monte Carlo techniques and has a measure to evaluate relative errors. It promises to increase the acc
We derive asymptotic behaviors of the Nambu-Bethe-Salpeter (NBS) wave function at large space separations for systems with more than 2 particles in quantum field theories. To deal with $n$-particles in the center of mass flame coherently, we introduc
With advances in quantum computing, new opportunities arise to tackle challenging calculations in quantum field theory. We show that trotterized time-evolution operators can be related by analytic continuation to the Euclidean transfer matrix on an a
PT-symmetric quantum mechanics began with a study of the Hamiltonian $H=p^2+x^2(ix)^varepsilon$. A surprising feature of this non-Hermitian Hamiltonian is that its eigenvalues are discrete, real, and positive when $varepsilongeq0$. This paper examine
Quantum technologies offer the prospect to efficiently simulate sign-problem afflicted regimes in lattice field theory, such as the presence of topological terms, chemical potentials, and out-of-equilibrium dynamics. In this work, we derive the 3+1D