ترغب بنشر مسار تعليمي؟ اضغط هنا

B meson decay constant from two-flavor lattice QCD with non-relativistic heavy quarks

74   0   0.0 ( 0 )
 نشر من قبل Akira Ukawa
 تاريخ النشر 2001
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a study of leptonic $B$ meson decay constants in lattice QCD with two flavors ($N_f=2$) of light dynamical quarks using NRQCD for the heavy quark. Gauge configurations are generated with a renormalization-group improved gauge action and a meanfield-improved clover light quark action. Measurements are carried out at two values of $beta=6/g^2$, each for four sea quark masses, corresponding to the inverse lattice spacing $a^{-1}approx 1.3$ and 1.8 GeV in the chiral limit of sea quark. The continuum values of the decay constants are derived by evaluating the discretization errors at each finite lattice spacing. We find $f_B^{N_f=2}=204(8)(29)(+44) $ MeV, $f_{B_s}^{N_f=2} = 242(9)(34)(+38)$ MeV, and $f_{B_s}^{N_f=2}/f_B^{N_f=2} = 1.179(18)(23)$, where the errors listed are statistical, systematic and uncertainty due to choice of the physical quantity used to fix the scale. Comparison is made to quenched results ($N_f=0$) obtained with the same action combination and matching lattice spacings. We find $f_B^{N_f=2}/f_B^{N_f=0}=1.07(5)$, $f_{B_s}^{N_f=2}/f_{B_s}^{N_f=0}=1.10(5)$ and $(f_{B_s}/f_B)^{N_f=2}/(f_{B_s}/f_B)^{N_f=0}=1.03(2)$, which indicates a 5--10% increase in the values of the decay constants, but no appreciable change in the ratio $f_{B_s}/f_B$, due to sea quarks.



قيم البحث

اقرأ أيضاً

We calculate the B-meson decay constants f_B, f_Bs, and their ratio in unquenched lattice QCD using domain-wall light quarks and relativistic b-quarks. We use gauge-field ensembles generated by the RBC and UKQCD collaborations using the domain-wall f ermion action and Iwasaki gauge action with three flavors of light dynamical quarks. We analyze data at two lattice spacings of a ~ 0.11, 0.086 fm with unitary pion masses as light as M_pi ~ 290 MeV; this enables us to control the extrapolation to the physical light-quark masses and continuum. For the b-quarks we use the anisotropic clover action with the relativistic heavy-quark interpretation, such that discretization errors from the heavy-quark action are of the same size as from the light-quark sector. We renormalize the lattice heavy-light axial-vector current using a mostly nonperturbative method in which we compute the bulk of the matching factor nonperturbatively, with a small correction, that is close to unity, in lattice perturbation theory. We also improve the lattice heavy-light current through O(alpha_s a). We extrapolate our results to the physical light-quark masses and continuum using SU(2) heavy-meson chiral perturbation theory, and provide a complete systematic error budget. We obtain f_B0 = 199.5(12.6) MeV, f_B+ = 195.6(14.9) MeV, f_Bs = 235.4(12.2) MeV, f_Bs/f_B0 = 1.197(50), and f_Bs/f_B+ = 1.223(71), where the errors are statistical and total systematic added in quadrature. These results are in good agreement with other published results and provide an important independent cross check of other three-flavor determinations of $B$-meson decay constants using staggered light quarks.
We determine masses and decay constants of heavy-heavy and heavy-charm pseudoscalar mesons as a function of heavy quark mass using a fully relativistic formalism known as Highly Improved Staggered Quarks for the heavy quark. We are able to cover the region from the charm quark mass to the bottom quark mass using MILC ensembles with lattice spacing values from 0.15 fm down to 0.044 fm. We obtain f_{B_c} = 0.427(6) GeV; m_{B_c} = 6.285(10) GeV and f_{eta_b} = 0.667(6) GeV. Our value for f_{eta_b} is within a few percent of f_{Upsilon} confirming that spin effects are surprisingly small for heavyonium decay constants. Our value for f_{B_c} is significantly lower than potential model values being used to estimate production rates at the LHC. We discuss the changing physical heavy-quark mass dependence of decay constants from heavy-heavy through heavy-charm to heavy-strange mesons. A comparison between the three different systems confirms that the B_c system behaves in some ways more like a heavy-light system than a heavy-heavy one. Finally we summarise current results on decay constants of gold-plated mesons.
We present a two-flavor dynamical QCD calculation of the B meson B parameters and decay constant. We use NRQCD for heavy quark and the nonperturbatively O(a)-improved Wilson action for light quark at $beta$=5.2 on a $20^3times 48$ lattice. We confirm that the sea quark effect increases the heavy-light decay constant, while estimate of its magnitude depends significantly on the fitting form in the chiral extrapolation. For the B parameters, on the other hand, we do not find a significant sea quark effect. The chiral extrapolation with logarithmic term is examined for both quantities and compared with the prediction of ChPT.
We calculate the leptonic decay constants of B_{(s)} and D_{(s)} mesons in lattice QCD using staggered light quarks and Fermilab bottom and charm quarks. We compute the heavy-light meson correlation functions on the MILC asqtad-improved staggered gau ge configurations which include the effects of three light dynamical sea quarks. We simulate with several values of the light valence- and sea-quark masses (down to ~m_s/10) and at three lattice spacings (a ~ 0.15, 0.12, and 0.09 fm) and extrapolate to the physical up and down quark masses and the continuum using expressions derived in heavy-light meson staggered chiral perturbation theory. We renormalize the heavy-light axial current using a mostly nonperturbative method such that only a small correction to unity must be computed in lattice perturbation theory and higher-order terms are expected to be small. We obtain f_{B^+} = 196.9(8.9) MeV, f_{B_s} = 242.0(9.5) MeV, f_{D^+} = 218.9(11.3) MeV, f_{D_s} = 260.1(10.8) MeV, and the SU(3) flavor-breaking ratios f_{B_s}/f_{B} = 1.229(26) and f_{D_s}/f_{D} = 1.188(25), where the numbers in parentheses are the total statistical and systematic uncertainties added in quadrature.
117 - A. Bazavov , C. Bernard , N. Brown 2017
We calculate the leptonic decay constants of heavy-light pseudoscalar mesons with charm and bottom quarks in lattice quantum chromodynamics on four-flavor QCD gauge-field configurations with dynamical $u$, $d$, $s$, and $c$ quarks. We analyze over tw enty isospin-symmetric ensembles with six lattice spacings down to $aapprox 0.03$~fm and several values of the light-quark mass down to the physical value $frac{1}{2}(m_u+m_d)$. We employ the highly-improved staggered-quark (HISQ) action for the sea and valence quarks; on the finest lattice spacings, discretization errors are sufficiently small that we can calculate the $B$-meson decay constants with the HISQ action for the first time directly at the physical $b$-quark mass. We obtain the most precise determinations to-date of the $D$- and $B$-meson decay constants and their ratios, $f_{D^+} = 212.7(0.6)$~MeV, $f_{D_s} = 249.9(0.4)$~MeV, $f_{D_s}/f_{D^+} = 1.1749(16)$, $f_{B^+} = 189.4 (1.4)$~MeV, $f_{B_s} = 230.7(1.3)$~MeV, $f_{B_s}/f_{B^+} = 1.2180(47)$, where the errors include statistical and all systematic uncertainties. Our results for the $B$-meson decay constants are three times more precise than the previous best lattice-QCD calculations, and bring the QCD errors in the Standard-Model predictions for the rare leptonic decays $overline{mathcal{B}}(B_s to mu^+mu^-) = 3.64(11) times 10^{-9}$, $overline{mathcal{B}}(B^0 to mu^+mu^-) = 1.00(3) times 10^{-10}$, and $overline{mathcal{B}}(B^0 to mu^+mu^-)/overline{mathcal{B}}(B_s to mu^+mu^-) = 0.0273(9)$ to well below other sources of uncertainty. As a byproduct of our analysis, we also update our previously published results for the light-quark-mass ratios and the scale-setting quantities $f_{p4s}$, $M_{p4s}$, and $R_{p4s}$. We obtain the most precise lattice-QCD determination to date of the ratio $f_{K^+}/f_{pi^+} = 1.1950(^{+16}_{-23})$~MeV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا