ﻻ يوجد ملخص باللغة العربية
We use a space-time asymmetric O(a) improved fermion action and fix the asymmetry non-perturbatively to restore the relativistic dispersion relation. We compute spectra and matrix elements of quarkonia and heavy-light mesons and compare with results obtained using a symmetric action with the Fermilab interpretation i.e. that the physics of heavy lattice quarks depends solely on their kinetic mass. We provide additional evidence to support this.
Lattice quantum chromodynamics provides first principles calculations for hadrons containing heavy quarks -- charm and bottom quarks. Their mass spectra, decay rates, and some hadronic matrix elements can be calculated on the lattice in a model indep
We present a calculation of the heavy quarks self energy in moving NRQCD to one-loop in perturbation theory. Results for the energy shift and external momentum renormalisation are discussed and compared with non-perturbative results. We show that the
We compare SU(2) Polyakov loop models with different effective actions with data from full two-color QCD simulations around and above the critical temperature. We then apply the effective theories at finite temperature and density to extract quantiti
We present results from an ongoing lattice study of the lowest lying charmonium and bottomonium level splittings using the Fermilab heavy quark formalism. Our objective is to test the performance of this action on MILC-collaboration ensembles of (2+1
We develop an improved lattice action for heavy quarks based on Brillouin-type fermions, that have excellent energy-momentum dispersion relation. The leading discretization errors of $O(a)$ and $O(a^2)$ are eliminated at tree-level. We carry out a sc