ﻻ يوجد ملخص باللغة العربية
A forward walking Greens Function Monte Carlo algorithm is used to obtain expectation values for SU(3) lattice Yang-Mills theory in (3+1) dimensions. The ground state energy and Wilson loops are calculated, and the finite-size scaling behaviour is explored. Crude estimates of the string tension are derived, which agree with previous results at intermediate couplings; but more accurate results for larger loops will be required to establish scaling behaviour at weak coupling.
A `forward walking Greens Function Monte Carlo algorithm is used to obtain expectation values for SU(3) lattice Yang-Mills theory in (3+1) dimensions. The ground state energy and Wilson loops are calculated, and the finite-size scaling behaviour is e
The center vortex model for the infrared sector of SU(3) Yang-Mills theory is reviewed. After discussing the physical foundations underlying the model, some technical aspects of its realisation are discussed. The confining properties of the model are
We give a comparison of the spectrum of Yang-Mills theory in $D=3+1$, recently derived with a strong coupling expansion, with lattice data. We verify excellent agreement also for 2$^{++}$ glueball. A deep analogy with the $D=2+1$ case is obtained and
We study the infrared behavior of the effective Coulomb potential in lattice SU(3) Yang-Mills theory in the Coulomb gauge. We use lattices up to a size of 48^4 and three values of the inverse coupling, beta=5.8, 6.0 and 6.2. While finite-volume effec
We apply a machine learning technique for identifying the topological charge of quantum gauge configurations in four-dimensional SU(3) Yang-Mills theory. The topological charge density measured on the original and smoothed gauge configurations with a