We study various representations of infrared effective theory of SU(2) Gluodynamics as a (quantum) perfect lattice action. In particular we derive a monopole action and a string model of hadrons from SU(2) Gluodynamics. These are lattice actions which give almost cut-off independent physical quantities even on coarse lattices. The monopole action is determined by numerical simulations in the infrared region of SU(2) Gluodynamics. The string model of hadrons is derived from the monopole action by using BKT transformation. We illustrate the method and evaluate physical quantities such as the string tension and the mass of the lowest state of the glueball analytically using the string model of hadrons. It turns out that the classical results in the string model is near to the one in quantum SU(2) Gluodynamics.