ﻻ يوجد ملخص باللغة العربية
A new experimental search for muonium-antimuonium conversion was conducted at the Paul Scherrer Institute, Villigen, Switzerland. The preliminary analysis yielded one event fulfilling all required criteria at an expected background of 1.7(2) events due to accidental coincidences. An upper limit for the conversion probability in 0.1 T magnetic field is extracted as $8 cdot 10^{-11}$ (90% CL).
A new upper limit for the probability of spontaneous muonium to antimuonium conversion was established at ${rm P_{Mbar{M}}} leq 8.2 cdot 10^{-11}$ (90%C.L.) in 0.1~T magnetic field, which implies consequences for speculative extensions to the standar
A new result from searching for muonium to antimuonium conversion is reported which sets an upper limit on the coupling constant in an assumed $(V-A) times (V-A)$ type interaction of $G_{Mbar{M}} leq 3cdot 10^{-3} G_F$ ~ (90% C.L.). A particular Z_
A new experiment has been set up at the Paul Scherrer Institut to search for muonium to antimuonium conversion. No event was found to fulfil the requested signature which consists of the coincident detection of both constituents of the antiatom in it
The spontaneous muonium-to-antimuonium conversion is one of the interesting charged lepton flavor violation processes. MACE is the next generation experiment to probe such a phenomenon. In models with a triplet Higgs to generate neutrino masses, such
This manuscript derives explicit factors linking mode-mismatch-induced power losses, in Hermite-Gauss optical modes to the losses of the fundamental spatial mode. Higher order modes are found to be more sensitive to beam parameter mismatches. This is