ﻻ يوجد ملخص باللغة العربية
The COSY-11 collaboration has conducted experiments aiming at the determination of the excitation function and phase-space population of the p p --> p p eta reaction close to the kinematical threshold. The precise data obtained with the stochastically cooled proton beam of the cooler synchrotron COSY and the high resolution zero-degree magnetic spectrometer allowed for the observation of the significant deviations - in the shape of the excitation function and two-particle invariant masses - from the predictions based on the assumption that the reaction phase space is homogenously populated. Comparison of the shape of the excitation function for the p p --> p p eta and p p --> p p eta-prime reaction allows to distinquish in the model independent way an influence originating from the proton-proton and proton-eta interaction. For the comparison the full data set from experiments performed at COSY and other laboratories is used.
Due to their short life-time, flavour-neutral mesons cannot be utilized as free secondary beams or targets, and therefore a study of their interaction with nucleons is not possible via direct scattering experiments. This interaction is, however, ac
We report on the status of the search for eta-mesic nuclei and the studies of the interaction of the eta meson with nucleons. Recently we have completed the analysis of the new WASA-at-COSY data on the production of the eta meson with polarized proto
The $eta$-meson production in photon- and hadron-induced reactions, namely, $gamma p to p eta$, $pi^- p to n eta$, $pp to ppeta$, and $pn to pneta$, are investigated in a combined analysis in order to learn about the relevant production mechanisms an
We present the results of measurements of the analysing power for the p(pol)p --> pp eta reaction at the excess energies of Q=10 and 36 MeV, and interpret these results within the framework of the meson exchange models. The determined values of the a
We measure the mass of the eta meson using psi(2S) --> eta J/psi events acquired with the CLEO-c detector operating at the CESR e+e- collider. Using the four decay modes eta --> gamma gamma, 3pi0, pi+pi-pi0, and pi+pi-gamma, we find M(eta)=547.785 +-