ترغب بنشر مسار تعليمي؟ اضغط هنا

Reweighting of the form factors in exclusive B --> X ell nu decays

57   0   0.0 ( 0 )
 نشر من قبل Paul Taras
 تاريخ النشر 2004
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A form factor reweighting technique has been elaborated to permit relatively easy comparisons between different form factor models applied to exclusive B --> X l nu decays. The software tool developped for this purpose is described. It can be used with any event generator, three of which were used in this work: ISGW2, PHSP and FLATQ2, a new powerful generator. The software tool allows an easy and reliable implementation of any form factor model. The tool has been fully validated with the ISGW2 form factor hypothesis. The results of our present studies indicate that the combined use of the FLATQ2 generator and the form factor reweighting tool should play a very important role in future exclusive |Vub| measurements, with largely reduced errors.



قيم البحث

اقرأ أيضاً

We report the first measurement of the lepton forward-backward asymmetry ${cal A}_{rm FB}$ as a function of the squared four-momentum of the dilepton system, $q^2$, for the electroweak penguin process $B rightarrow X_s ell^+ ell^-$ with a sum of excl usive final states, where $ell$ is an electron or a muon and $X_s$ is a hadronic recoil system with an $s$ quark. The results are based on a data sample containing $772times10^6$ $Bbar{B}$ pairs recorded at the $Upsilon(4S)$ resonance with the Belle detector at the KEKB $e^+ e^-$ collider. ${cal A}_{rm FB}$ for the inclusive $B rightarrow X_s ell^+ ell^-$ is extrapolated from the sum of 10 exclusive $X_s$ states whose invariant mass is less than 2 GeV/$c^2$. For $q^2 > 10.2$ GeV$^2$/$c^2$, ${cal A}_{rm FB} < 0$ is excluded at the 2.3$sigma$ level, where $sigma$ is the standard deviation. For $q^2 < 4.3$ GeV$^2$/$c^2$, the result is within 1.8$sigma$ of the Standard Model theoretical expectation.
85 - S.B. Athar , et al 2003
We report on determinations of |Vub| resulting from studies of the branching fraction and q^2 distributions in exclusive semileptonic B decays that proceed via the b->u transition. Our data set consists of the 9.7x10^6 BBbar meson pairs collected at the Y(4S) resonance with the CLEO II detector. We measure B(B0 -> pi- l+ nu) = (1.33 +- 0.18 +- 0.11 +- 0.01 +- 0.07)x10^{-4} and B(B0 -> rho- l+ nu) = (2.17 +- 0.34 +0.47/-0.54 +- 0.41 +- 0.01)x10^{-4}, where the errors are statistical, experimental systematic, systematic due to residual form-factor uncertainties in the signal, and systematic due to residual form-factor uncertainties in the cross-feed modes, respectively. We also find B(B+ -> eta l+ nu) = (0.84 +- 0.31 +- 0.16 +- 0.09)x10^{-4}, consistent with what is expected from the B -> pi l nu mode and quark model symmetries. We extract |Vub| using Light-Cone Sum Rules (LCSR) for 0<= q^2<16 GeV^2 and Lattice QCD (LQCD) for 16 GeV^2 <= q^2 < q^2_max. Combining both intervals yields |Vub| = (3.24 +- 0.22 +- 0.13 +0.55/-0.39 +- 0.09)x10^{-3}$ for pi l nu, and |Vub| = (3.00 +- 0.21 +0.29/-0.35 +0.49/-0.38 +-0.28)x10^{-3} for rho l nu, where the errors are statistical, experimental systematic, theoretical, and signal form-factor shape, respectively. Our combined value from both decay modes is |Vub| = (3.17 +- 0.17 +0.16/-0.17 +0.53/-0.39 +-0.03)x10^{-3}.
This article describes a determination of the Cabibbo-Kobayashi-Maskawa matrix element $|V_{cb}|$ from the decay $B^0to D^{*-}ell^+ u_ell$ using 711 fb$^{-1}$ of Belle data collected near the $Upsilon(4S)$ resonance. We simultaneously measure the pro duct of the form factor normalization $mathcal{F}(1)$ and the matrix element $|V_{cb}|$ as well as the three parameters $rho^2$, $R_1(1)$ and $R_2(1)$, which determine the form factors of this decay in the framework of the Heavy Quark Effective Theory. The results, based on about 120,000 reconstructed $B^0to D^{*-}ell^+ u_ell$ decays, are $rho^2=1.214pm 0.034pm 0.009$, $R_1(1)=1.401pm 0.034pm 0.018$, $R_2(1)=0.864pm 0.024pm 0.008$ and $mathcal{F}(1)|V_{cb}|=(34.6pm 0.2pm 1.0)times 10^{-3}$. The branching fraction of $B^0to D^{*-}ell^+ u_ell$ is measured at the same time; we obtain a value of $mathcal{B}(B^0 to D^{*-}ell^+ u_ell) = (4.58 pm 0.03 pm 0.26) %$. The errors correspond to the statistical and systematic uncertainties. These results give the most precise determination of the form factor parameters and $mathcal{F}(1)|V_{cb}|$ to date. In addition, a direct, model-independent determination of the form factor shapes has been carried out.
Form factors of the rare $Lambda_{b}(Lambda_{b}^*)to Nell^{+}ell^{-}$ decays are calculated in the framework of the light cone QCD sum rules by taking into account of the contributions from the negative parity baryons. Using the obtained results on t he form factors, the branching ratios of the considered decays are estimated. The numerical survey for the branching ratios of the $Lambda_b rar Nell^+ell^- $ and $Lambda_b^ast rar Nell^+ell^- $ decays indicate that these transitions could be measurable in LHCb in near future. Comparison of our predictions on the form factors and branching ratios with those existing in the literature is also performed.
281 - Ran Zhou 2012
We report on form factors for the B->K l^+ l^- semi-leptonic decay process. We use several lattice spacings from a=0.12 fm down to 0.06 fm and a variety of dynamical quark masses with 2+1 flavors of asqtad quarks provided by the MILC Collaboration. T hese ensembles allow good control of the chiral and continuum extrapolations. The b-quark is treated as a clover quark with the Fermilab interpretation. We update our results for f_parallel and f_perp, or, equivalently, f_+ and f_0. In addition, we present new results for the tensor form factor f_T. Model independent results are obtained based upon the z-expansion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا